scholarly journals APPLICATION OF COCONUT FIBER AND POLYVINYL-ALCOHOL BLENDS TO IMPROVE THE DURABILITY OF CONCRETE STRUCTURES IN VIETNAM

InterConf ◽  
2021 ◽  
pp. 418-426
Author(s):  
Thi Ngoc Quyen Nguyen

The biggest disadvantage of conventional concrete is brittle and hard, in addition, its durability is not high. The low durability of concrete is due to the presence of calcium hydroxide at the intersection of coarse aggregate particles and hard cement powder. The introduction of coconut fiber and polyvinyl alcohol (PVA) fibers into the concrete to improve the durability and flexibility of the concrete. In addition, the article also considers the effects of other additives such as rice husk ash, silica fume to study the performance of the structure as well as its durability when joining concrete mixes to create flexible concrete movable and more flexible than conventional concrete.

2020 ◽  
Vol 184 ◽  
pp. 01083
Author(s):  
Dr. Vanathi ◽  
Dr.K Radhika ◽  
Ms. G. Swetha

Permeable concrete is a special concrete which consists of cement, coarse aggregate and water. Due to rapid growth of globalization and urbanization, the construction of concrete roads increasing day by day which leads to decrease in percolation of storm water, surface runoff occurring to the decrease in ground water table. In previous concrete, single sized aggregate is used to maintain the void ratio in the concrete. The cement paste is bonded with aggregate with a void ratio of 20%. In this investigation, concrete of M20 grade with water cement ratio of 0.38 is used. The properties of concrete were increased by using Rice husk ash and Bagasse ash in changed percentages (10%, 20%, 30%) by weight of cement and with the combination of rice husk ash and bagasse ash 10% (5%RA + 5%BA), 20%(10%RA+10%BA), 30%(15%RA+15%BA) are used. The compressive strength of cubes, split tensile of cylinders are casted, tested after 7 days and 28 days. After testing, the optimum percentages of replacement of admixtures are found in the Permeable concrete. Therefore the strength and durability properties of permeable concrete with the addition of bagasse ash and rice husk ash with partial replacement of cement are compared with conventional concrete.


2008 ◽  
Vol 385-387 ◽  
pp. 289-292 ◽  
Author(s):  
Ali Sadrmomtazi ◽  
O. Alidoust ◽  
Akbar K. Haghi

The amount of waste glass sent to landfill has increased over recent years due to an ever growing use of glass products. Landfilling can cause major environmental problems because the glass is not biodegradable material. However, waste glass can be used as fine aggregate, coarse aggregate and powder form in concrete. The fine and coarse aggregate can cause alkali-silica reaction (ASR) in concrete, but the powder form can suppress their ASR tendency and acts as a pozzolanic material. This paper studies the expansion properties in concrete containing waste glass, silica fume, rice husk ash and polypropylene fibers in detail.


Author(s):  
Satarupa Chakraborty

In this review study, the effect of three different materials such as rice husk ash, recycled concrete aggregate and Polyvinyl Alcohol fibre was reviewed in detail. Several past studies related to these material usage in strength enhancement of concrete was studied in detail. Rice husk ash is the ash which is mainly derived after burning the waste derived from the rice industry after the processing of rice. Recycled concrete aggregate is mainly the aggregate derived from the constructional waste. Polyvinyl Alcohol fibre is a special type of high strength fibre that is mainly used to improve the flexural strength and internal bonding of the concrete. Numerous studies were discussed in detail and depending upon the studies certain conclusion are drawn which are discussed further. Several studies related to the usage of rice husk ash conclude that the most optimum usage percentage of rice husk ash as partial replacement of ordinary Portland cement was at 10 percent usage. After 10 percent usage strength tends to decline. Results related o usage as partial replacement of natural fine aggregate that is sand showed that it can be used as partial replacement of natural coarse aggregate up to 20 percent and beyond that usage the strength was declining. The studies related to the usage of recycled concrete aggregate conclude that the most optimum percentage of usage of recycled concrete aggregate as partial replacement of natural coarse aggregate was 50 percent replacement and beyond this percentage the strength starts declining so therefore should not be used beyond that limit. Studies related to the usage of Polyvinyl Alcohol fibre revealed that the most optimum percentage of Polyvinyl Alcohol fibre was 1.5 percent and beyond this percentage both the compressive strength of concrete and flexural strength of concrete was declining. Test results concluded that Polyvinyl Alcohol fibre should be used up to 1.5 percent only.


Author(s):  
Aikot Pallikkara Shashikala ◽  
Praveen Nagarajan ◽  
Saranya Parathi

Production of Portland cement causes global warming due to the emission of greenhouse gases to the environment. The need for reducing the amount of cement is necessary from sustainability point of view. Alkali activated and geopolymeric binders are used as alternative to cement. Industrial by-products such as fly ash, ground granulated blast furnace slag (GGBS), silica fume, rice husk ash etc. are commonly used for the production of geopolymer concrete. This paper focuses on the development of geopolymer concrete from slag (100% GGBS). Effect of different cementitious materials such as lime, fly ash, metakaolin, rice husk ash, silica fume and dolomite on strength properties of slag (GGBS) based geopolymer concrete are also discussed. It is observed that the addition of dolomite (by-products from rock crushing plants) into slag based geopolymer concrete reduces the setting time, enhances durability and improves rapidly the early age strength of geopolymer concrete. Development of geopolymer concrete with industrial by-products is a solution to the disposal of the industrial wastes. The quick setting concrete thus produced can reduce the cost of construction making it sustainable also.


2013 ◽  
Vol 49 ◽  
pp. 88-96 ◽  
Author(s):  
C.L. Pereira ◽  
H. Savastano ◽  
J. Payá ◽  
S.F. Santos ◽  
M.V. Borrachero ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Agung Prayogi

Abstract Concrete is the most widely used material throughout the world and innovations continue to be carried out to produce efficient development. Shell charcoal ash and rice husk ash are industrial by-products which have the potential to replace sand for concrete mix, especially in Indragiri Hilir. The research with the title "Effect of Mixture of Rice Husk Ash and Shell Ash Ashes as Substitute for Some Fine Aggregates Against Concrete Compressive Strength" aims to prove the effect of a mixture of shell charcoal ash and husk ash to replace some of the sand to produce maximum compressive strength. Concrete is a mixture of Portland cement, fine aggregate, coarse aggregate, and water. This research uses 5 variations of the mixture to the weight of sand, BSA 0 without a substitute mixture, BSA 1 with a mixture of 5% husk ash and 10% shell charcoal, BSA 2 with a mixture of 5% husk ash and 15% charcoal ash, BSA 3 with a mixture of 5% husk ash and 18% charcoal, BSA 4 with a mixture of 10% husk and 10% charcoal, and BSA 5 with a mixture of 13% husk ash and 10% charcoal ash. SNI method is used for the Job Mix Formula (JMF) mixture in this research. The results of the average compressive strength of concrete at 28 days for JMF of 21.05 MPa, BSA 1 of 23.68 MPa, BSA 2 of 22.23 MPa, BSA 3 of 14.39 MPa, BSA 4 of 13.34 MPa , and BSA 5 of 20.14 MPa. The conclusion drawn from the results of the BSA 1 research with a mixture of 5% husk ash and 15% charcoal ash produced the highest average compressive strength of 23.68 MPa. Abstrak Beton merupakan material paling banyak digunakan diseluruh dunia dan terus dilakukan inovasi untuk menghasilkan pembangunan yang efisien. Abu arang tempurung dan abu sekam padi merupakan hasil sampingan industri yang berpotensi sebagai pengganti pasir untuk campuran beton, khususnya di Indragiri Hilir. Penelitian dengan judul “Pengaruh Campuran Abu Sekam Padi dan Abu Arang Tempurung Sebagai Pengganti Sebagian Agregat Halus Terhadap Kuat Tekan Beton” ini bertujuan membuktikan adanya pengaruh campuran abu arang tempurung dan abu sekam untuk mengganti sebagian pasir hingga menghasilkan kuat tekan maksimum. Beton adalah campuran antara semen portland, agregat halus, agregat kasar, dan air. Penelitian ini menggunakan 5 variasi campuran terhadap berat pasir, BSA 0 tanpa campuran pengganti, BSA 1 dengan campuran 5 % abu sekam dan 10% arang tempurung, BSA 2 dengan campuran 5% abu sekam dan 15% abu arang, BSA 3 dengan campuran 5% abu sekam dan 18% arang, BSA 4 dengan campuran 10% sekam dan 10% arang, dan BSA 5 dengan campuran 13% abu sekam dan 10% abu arang. Metode SNI digunakan untuk campuran Job Mix Formula (JMF)  pada penelitian ini. Hasil rata-rata kuat tekan beton pada umur 28 hari untuk JMF sebesar 21,05 MPa, BSA 1 sebesar 23,68 MPa, BSA 2 sebesar 22,23 MPa, BSA 3 sebesar 14,39 MPa, BSA 4 sebesar 13,34 MPa, dan BSA 5 Sebesar 20,14 MPa. Ditarik kesimpulan dari hasil penelitian BSA 1 dengan campuran 5% abu sekam dan 15% abu arang menghasilkan rata-rata kuat tekan tertinggi yaitu sebesar 23,68 MPa.  


Sign in / Sign up

Export Citation Format

Share Document