Test Methods for Rating and Classifying Inclusions in Steel Using the Scanning Electron Microscope

10.1520/e2142 ◽  
2008 ◽  
Author(s):  
2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Qiuxiang Zhang ◽  
Xinhua Liu ◽  
Yankun Ren ◽  
Lifeng Wang ◽  
Yuan Hu

Aiming to study the effect of particle size on the wear property of magnetorheological fluid (MRF), experiment materials, preparation process, and test methods are elaborated, and three different MRF samples consisting of particles of different size are prepared. Test experiments are carried out and the effect of particle size on the wear property of MRF is discussed. Moreover, the microstructures of particles extracted from MRF obtained before and after the wear experiments are observed by scanning electron microscope (SEM). Experimental results show that the particle size has a significant effect on wear property of MRF. Furthermore, the MRF with particles of 1.5–2.8 μm diameter on average is good for the requirement of engineering applications.


Author(s):  
Tim Eaton ◽  
William Whyte

Cleanroom garments are used to control the airborne dispersion of contamination from people into the cleanroom. The effectiveness of the garment in controlling the dispersion of contamination is a function of the fabric and design of garments, and test methods used to ascertain the effectiveness of garments are discussed in this article. These test methods can be used when choosing garments for use in a cleanroom but were used in this article to determine the deterioration of garments through use. Cleanroom garments were subjected to increasing numbers of decontamination cycles, which included sterilisation by gamma radiation, up to a maximum of 70. At defined number of decontamination cycles, the garment’s fabric was compared to a new fabric by visual examination, by a scanning electron microscope, and by physical tests of key performance parameters. It was concluded that the performance of the fabric remained acceptable up to 50 decontamination cycles. This conclusion was supported by the low dispersion rate of particles and microbe-carrying particles in a dispersal chamber from personnel wearing the garments. After 50 decontamination cycles, a low dispersion rate of 0.2/s of microbe-carrying particles from personnel wearing the garments was obtained and a 194-fold reduction in the microbial dispersion rate compared to cleanroom undergarments. Key words: cleanroom garments, garment life, contamination control


2013 ◽  
Vol 838-841 ◽  
pp. 2488-2493
Author(s):  
Kun Jiao ◽  
Cheng Tun Qu ◽  
Bo Yang ◽  
Xie Qian

The corrosion status and results in a certain water injection station in Shanbei oilfield were monitored and evaluated by flow corrosion test (FCT) (with homemade corrosion test device), static corrosion test (SCT), and water tank corrosion test (WTCT). The coupons after corrosion tests were observed by Scanning Electron Microscope (SEM). It was found that: the corrosion rates of SCT, FCT and WTCT were 0.0469~0.0552 mm/a, 0.5126~0.5299 mm/a, and 0.3250~0.3414 mm/a respectively; the corrosion rates SCT were much smaller than actual. The severity of pitting corrosion, pointed corrosion and other forms of local corrosion cannot be reflected by SCT. The corrosion rates and behaviors tested by homemade corrosion test device are more close and similar to the real.


Author(s):  
R. E. Ferrell ◽  
G. G. Paulson

The pore spaces in sandstones are the result of the original depositional fabric and the degree of post-depositional alteration that the rock has experienced. The largest pore volumes are present in coarse-grained, well-sorted materials with high sphericity. The chief mechanisms which alter the shape and size of the pores are precipitation of cementing agents and the dissolution of soluble components. Each process may operate alone or in combination with the other, or there may be several generations of cementation and solution.The scanning electron microscope has ‘been used in this study to reveal the morphology of the pore spaces in a variety of moderate porosity, orthoquartzites.


Author(s):  
C. T. Nightingale ◽  
S. E. Summers ◽  
T. P. Turnbull

The ease of operation of the scanning electron microscope has insured its wide application in medicine and industry. The micrographs are pictorial representations of surface topography obtained directly from the specimen. The need to replicate is eliminated. The great depth of field and the high resolving power provide far more information than light microscopy.


Author(s):  
K. Shibatomi ◽  
T. Yamanoto ◽  
H. Koike

In the observation of a thick specimen by means of a transmission electron microscope, the intensity of electrons passing through the objective lens aperture is greatly reduced. So that the image is almost invisible. In addition to this fact, it have been reported that a chromatic aberration causes the deterioration of the image contrast rather than that of the resolution. The scanning electron microscope is, however, capable of electrically amplifying the signal of the decreasing intensity, and also free from a chromatic aberration so that the deterioration of the image contrast due to the aberration can be prevented. The electrical improvement of the image quality can be carried out by using the fascionating features of the SEM, that is, the amplification of a weak in-put signal forming the image and the descriminating action of the heigh level signal of the background. This paper reports some of the experimental results about the thickness dependence of the observability and quality of the image in the case of the transmission SEM.


Author(s):  
S. Takashima ◽  
H. Hashimoto ◽  
S. Kimoto

The resolution of a conventional transmission electron microscope (TEM) deteriorates as the specimen thickness increases, because chromatic aberration of the objective lens is caused by the energy loss of electrons). In the case of a scanning electron microscope (SEM), chromatic aberration does not exist as the restrictive factor for the resolution of the transmitted electron image, for the SEM has no imageforming lens. It is not sure, however, that the equal resolution to the probe diameter can be obtained in the case of a thick specimen. To study the relation between the specimen thickness and the resolution of the trans-mitted electron image obtained by the SEM, the following experiment was carried out.


Sign in / Sign up

Export Citation Format

Share Document