Dynamic Modulus Characteristics of Mixtures Containing Recycled Asphalt Pavements, Warm Mix Additives, and Antistrip Agents

2020 ◽  
Vol 49 (3) ◽  
pp. 20200006
Author(s):  
Jiayu Wang ◽  
Ningyi Su ◽  
Feipeng Xiao ◽  
Serji N. Amirkhanian
2021 ◽  
Vol 16 (2) ◽  
pp. 48-65
Author(s):  
Audrius Vaitkus ◽  
Judita Gražulytė ◽  
Andrius Baltrušaitis ◽  
Jurgita Židanavičiūtė ◽  
Donatas Čygas

Properly designed and maintained asphalt pavements operate for ten to twenty-five years and have to be rehabilitated after that period. Cold in-place recycling has priority over all other rehabilitation methods since it is done without preheating and transportation of reclaimed asphalt pavement. Multiple researches on the performance of cold recycled mixtures have been done; however, it is unclear how the entire pavement structure (cold recycled asphalt pavement overlaid with asphalt mixture) performs depending on binding agents. The main objective of this research was to evaluate the performance of cold in-place recycled asphalt pavements considering binding agents (foamed bitumen in combination with cement or only cement) and figure out which binder leads to the best pavement performance. Three road sections rehabilitated in 2000, 2003, and 2005 were analysed. The performance of the entire pavement structure was evaluated in terms of the International Roughness Index, rut depth, and pavement surface distress in 2013 and 2017.


1991 ◽  
Vol 18 (3) ◽  
pp. 428-435 ◽  
Author(s):  
M. Sargious ◽  
N. Mushule

This paper summarizes the results of a study conducted to evaluate the behaviour of recycled asphalt pavements with respect to low-temperature cracking. For this purpose, a recycled mix consisting of 45.2% reclaimed materials and 54.8% virgin materials as well as a virgin control mix were used in the research program. In the design of both mixes, their initial properties were kept as close as possible to each other to allow for a proper comparison between recycled and virgin asphalt pavements. Using mix properties that were determined experimentally in the laboratory, thermal stresses resulted from drop in temperature and the expected cracking temperatures were determined for both mixes. An experimental analysis based on laboratory tests that consider the pavement properties only as well as a more complete theoretical analysis based on a finite element computer program known as FETAB were included in this study. The program incorporates subgrade parameters, as well as pavement properties and thickness. Using these variables as inputs to the program, the expected performance of recycled and virgin asphalt pavements of various thicknesses and resting on different types of subgrade, with respect to low-temperature cracking, was studied. The results of the study indicated that recycled asphalt pavements would perform better than virgin asphalt pavements of similar initial properties. Key words: asphalt, finite element, low-temperature cracking, reclaimed, recycled, thermal stresses.


Author(s):  
Hassan Malekzehtab ◽  
Hamid Nikraz

The dynamic modulus of the asphalt mixtures is an important factor in designing or analyzing an asphalt concrete pavement, but it is expensive and time consuming to measure. Therefore, it is important to develop a model to predict this value. In this regard, the Hirsch model is a popular model, however, it is developed based on a range of U.S. asphalt mixtures and standards. Therefore, it is not certain that it can be used for asphalt mixtures based on materials and codes other than U.S. This article investigated whether this model performs satisfactorily with two typical asphalt mixtures in Western Australia (WA) containing 0, 10, 20, and 30% of recycled asphalt pavement. To do so, cylindrical samples were made with materials and locally established standards in Western Australia and then tested in Asphalt Mixture Performance Tester (AMPT) machine to acquire their dynamic modulus and phase angle values in different loading frequencies (0.01 to 10 Hz) and temperatures (4 to 40°C). Meanwhile, the results are estimated by the Hirsch model using some properties of the mixture and binder. The properties of the binder in different test conditions are obtained using a dynamic shear rheometer. The comparison of the results showed that the dynamic modulus underestimation or overestimation error can reach to 50 and 280% respectively. Generally, this model did not perform well in this study.


2013 ◽  
Vol 18 (1) ◽  
pp. 149-159 ◽  
Author(s):  
Ki Hoon Moon ◽  
Augusto Cannone Falchetto ◽  
Mihai Marasteanu ◽  
Mugurel Turos

Author(s):  
Jo Sias Daniel ◽  
Aaron Lachance

This research examines how the addition of recycled asphalt pavement (RAP) changes the volumetric and mechanistic properties of asphalt mixtures. A Superpave® 19-mm mixture containing 0% RAP was the control for evaluating properties of mixes containing 15%, 25%, and 40% RAP. Two types of RAP were evaluated: a processed RAP and an unprocessed RAP (grindings). Testing included dynamic modulus in tension and compression, creep compliance in compression, and creep flow in compression. Dynamic modulus and creep compliance master curves were constructed with the use of the time–temperature superposition principle to describe the behavior of each mix over a range of temperatures. The voids in mineral aggregate (VMA) and voids filled with asphalt (VFA) of the RAP mixtures increased at the 25% and 40% levels, and there was also an influence of preheating time on the volumetric properties. The dynamic modulus of the processed RAP mixtures increased from the control to 15% RAP level, but the 25% and 40% RAP mixtures had dynamic modulus curves similar to that of the control mixture in both tension and compression. The creep compliance curves showed similar trends. A combination of gradation, asphalt content, and volumetric properties is likely the cause of these trends.


2017 ◽  
Vol 23 (5) ◽  
pp. 661-671 ◽  
Author(s):  
Nader SOLATIFAR ◽  
Amir KAVUSSI ◽  
Mojtaba ABBASGHORBANI ◽  
Henrikas SIVILEVIČIUS

This paper presents a simple method to determine dynamic modulus master curve of asphalt layers by con­ducting Falling Weight Deflectometer (FWD) for use in mechanistic-empirical rehabilitation. Ten new and rehabilitated in-service asphalt pavements with different physical characteristics were selected in Khuzestan and Kerman provinces in south of Iran. FWD testing was conducted on these pavements and core samples were taken. Witczak prediction model was used to predict dynamic modulus master curves from mix volumetric properties as well as the bitumen viscosity characteristics. Adjustments were made using FWD results and the in-situ dynamic modulus master curves were ob­tained. In order to evaluate the efficiency of the proposed method, the results were compared with those obtained by us­ing the developed procedure of the state-of-the-practice, Mechanistic-Empirical Pavement Design Guide (MEPDG). Re­sults showed the proposed method has several advantages over MEPDG including: (1) simplicity in directly constructing in-situ dynamic modulus master curve; (2) developing in-situ master curve in the same trend with the main predicted one; (3) covering the large differences between in-situ and predicted master curve in high frequencies; and (4) the value obtained for the in-situ dynamic modulus is the same as the value measured by the FWD for a corresponding frequency.


Sign in / Sign up

Export Citation Format

Share Document