Mechanical Properties of Epoxy Matrix-Borosilicate Glass Hollow-Particle Syntactic Foams

2017 ◽  
Vol 6 (1) ◽  
pp. MPC20150056 ◽  
Author(s):  
S. E. Zeltmann ◽  
B. Chen ◽  
N. Gupta
Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.


2021 ◽  
Author(s):  
Johannes Essmeister ◽  
M. Josef Taublaender ◽  
Thomas Koch ◽  
D. Alonso Cerrón-Infantes ◽  
Miriam M. Unterlass ◽  
...  

A novel class of fully organic composite materials with well-balanced mechanical properties and improved thermal stability was developed by incorporating highly crystalline, hydrothermally synthesized polyimide microparticles into an epoxy matrix.


2018 ◽  
Vol 10 (3) ◽  
pp. 363-370
Author(s):  
Yan Zhao ◽  
Xiaoyang Zhang ◽  
Wei Yuan ◽  
Fengfei Liu ◽  
Mengli Sun ◽  
...  

2019 ◽  
Vol 36 (1) ◽  
pp. 47-62
Author(s):  
AR Mohammed ◽  
MS Nurul Atiqah ◽  
Deepu A Gopakumar ◽  
MR Fazita ◽  
Samsul Rizal ◽  
...  

Natural fiber-reinforced composites gained considerable interest in the scientific community due to their eco-friendly nature, cost-effective, and excellent mechanical properties. Here, we reported a chemical modification of kenaf fiber using propionic anhydride to enhance the compatibility with the epoxy matrix. The incorporation of the modified woven and nonwoven kenaf fibers into the epoxy matrix resulted in the improvement of the thermal and mechanical properties of the composite. The thermal stability of the epoxy composites was enhanced from 403°C to 677°C by incorporating modified woven kenaf fibers into the epoxy matrix. The modified and unmodified woven kenaf fiber-reinforced epoxy composites had a tensile strength of 64.11 and 58.82 MPa, respectively. The modified woven composites had highest flexural strength, which was 89.4 MPa, whereas, for unmodified composites, it was 86.8 MPa. The modified woven fiber-reinforced epoxy composites showed the highest value of flexural modulus, which was 6.0 GPa compared to unmodified woven composites (5.51 GPa). The impact strength of the epoxy composites was enhanced to 9.43 kJ m−2 by the incarnation of modified woven kenaf fibers into epoxy matrix. This study will be an effective platform to design the chemical modification strategy on natural fibers for enhancing the compatibility toward the hydrophobic polymer matrices.


2019 ◽  
Vol 8 (4) ◽  
pp. 2449-2454

The instability behaviour of a woven fibre composite plate in respect of its free vibration and buckling analysis has been presented in this paper. The woven fibre composite plate has been prepared by hand layup with bidirectional woven glass fibres in epoxy matrix. The mechanical properties of the woven fibre composite plate have been characterised experimentally and a finite element investigation has been done for the instability analysis. Modal response of the plate and the critical buckling load leading to instability of the plate to varying parameters are studied and numerical results have been presented.


2003 ◽  
Vol 194 (1) ◽  
pp. 169-174 ◽  
Author(s):  
Lidia Kurzeja ◽  
Urzula Szeluga ◽  
Jocelyne Galy ◽  
Henry Sautereau ◽  
Nathalie Issartel

2009 ◽  
Vol 79-82 ◽  
pp. 553-556 ◽  
Author(s):  
Ling Fei Shi ◽  
Gang Li ◽  
Gang Sui ◽  
Xiao Ping Yang

The increasing proliferation and application of advanced polymer composites requires higher and broader performance resin matrices. Poly(oxypropylene) with –NH2 end-groups has been widely used to toughen epoxy resins, but the strength of resin matrix may be reduced due to the addition of flexible segments in the crosslinking network. Carbon nanotubes (CNTs) have been paid more and more attention in recent years because of their superior thermal and mechanical properties. In this paper, CNTs grafted with Jeffamines T403 were used to simultaneously improve the reinforcement and toughening of an epoxy resin. The untreated multi-walled carbon nanotubes (u-MWNTs) were functionalized with amine groups according to three steps: carboxylation, acylation, and amidation. The f-MWNTs were characterized by Fourier transform infra-red (FTIR) and X-ray photoelectron spectroscopy (XPS). The experimental results indicated that the T403 was grafted to the surface of MWCNTs. The mechanical and thermal properties of epoxy with f-MWNTs were investigated. The tensile and flexural strength increased by 7.77 % and 7.03 % after adding 0.5wt% f-MWCNTs without sacrificing the impact toughness. At the same time, dynamic mechanical thermal analysis (DMTA) showed that the glass transition temperature (Tg) of epoxy with f-MWNTs were increased. The fracture surface of epoxy with f-MWNTs was observed by scanning electron microscopy (SEM) to understand the dispersion of f-MWNTs in epoxy matrix and interfacial adhesion between f-MWNTs and epoxy matrix, which can be attributed to the strong interfacial bonding between f-MWNTs and epoxy resin.


Sign in / Sign up

Export Citation Format

Share Document