scholarly journals Mechanical properties of AlSi10MnMg matrix syntactic foams filled with lightweight expanded clay particles

Author(s):  
A Szlancsik ◽  
D Kincses ◽  
I N Orbulov
2019 ◽  
Vol 169 ◽  
pp. 107654 ◽  
Author(s):  
Sammy He ◽  
Declan Carolan ◽  
Alexander Fergusson ◽  
Ambrose C. Taylor

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Huizhi Zhang ◽  
Jifeng Liu

In order to reveal the water-induced damage mechanism and mechanical properties of red-layers in Southern China, typical red-layer samples are experimentally studied by scanning electron microscope (SEM), energy spectrum analysis, XRD, and mechanical tests. The results show that some red-layer samples contain a large number of smectite and illite-smectite mixed-layer clay minerals and their microstructures are mainly stacked microaggregates in which mutual agglomeration is formed by flake and tabular clay particles. Widespread distribution micropores and fractures in microaggregates provide the necessary moisture migration channels. The various cemented materials produce a kind of irreversible structural strength, and this strength is vulnerable for the aqueous medium conditions. The influence of microstructures and mineral compositions on red-layer mechanical properties is discussed. The results could provide the reference for further research about the water-induced damage mechanism of red-layers in Southern China.


2012 ◽  
Vol 706-709 ◽  
pp. 729-734 ◽  
Author(s):  
Masahiro Higuchi ◽  
Tadaharu Adachi ◽  
Yuto Yokochi ◽  
Kenta Fujimoto

In the study, novel fabrication processes of functionally-graded (FG) syntactic foams were developed to control distribution of the mechanical properties in the FG foams for highly impact energy absorption. In order to control mechanical properties, the density distributions in FG foams were graded by floating phenomenon of the light-weight micro-balloons in matrix resin during curing process. The density distribution in the foam could be controlled by adjusting the average volume fraction and the turning procedure of the mold before grading the micro-balloons in the foam. The compression tests of the fabricated FG foams suggested that the foams had high absorption of impact energy since the foams collapsed progressively due to the grading of the density distribution.


2012 ◽  
Vol 706-709 ◽  
pp. 461-466 ◽  
Author(s):  
Alejandra Reyna-Valencia ◽  
P. Chevallier ◽  
D. Mantovani

Collagen hydrogels are widely used as three-dimensional scaffolds for cells and tissue in culture environments. These materials, which consist of crosslinked biopolymer (protein-based) networks in aqueous media, are particularly suitable for recreating part of the extra-cellular matrix, but their poor mechanical properties represent a major limitation. One strategy to enhance the strength of this kind of hydrogels might be to incorporate clay nanoscopic particles. In fact, it has been observed that the charged surface of clay nanosheets can interact with certain functional groups belonging to polymer molecules, yielding stronger networks. Moreover, clay particles are recognized to be biocompatible. In the present work, the gelation process and the resulting morphological and mechanical properties of collagen/laponite clay nanocomposite hydrogels were invastigated. Upon gelation, the biopolymer molecules assemble into nanoscale fibrils, which bundle into fibers and entangle into a three-dimensional network. The network characteristics depend on tunable parameters such as pH and clay concentration.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1331
Author(s):  
Xinjiang Song ◽  
Haibo Xu ◽  
Deqin Zhou ◽  
Kai Yao ◽  
Feifei Tao ◽  
...  

In order to explore the effect of composite materials on the mechanical properties of coastal cement soil, cement soil samples with different iron tailings and nano silica contents were prepared, and unconfined compression and scanning electron microscope tests were carried out. The results show that: (1) The compressive strength of cement soil containing a small amount of iron tailings is improved, and the optimum content of iron tailings is 20%. (2) Nano silica can significantly improve the mechanical properties of iron tailings and cement soil (TCS). When the content of nano silica is 0.5%, 1.5%, and 2.5%, the unconfined compressive strength of nano silica- and iron tailings-modified cement soil (STCS) is 24%, 137%, and 323% higher than TCS, respectively. (3) Nano silica can promote the hydration reaction of cement and promote the cement hydration products to adhere to clay particles to form a relatively stable structure. At the same time, nano silica can fill the pores in TCS and improve the compactness of STCS.


2021 ◽  
Vol 853 ◽  
pp. 156572 ◽  
Author(s):  
Quanzhan Yang ◽  
Jingchang Cheng ◽  
Yanpeng Wei ◽  
Bo Yu ◽  
Zhiquan Miao ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2023 ◽  
Author(s):  
Attila Szlancsik ◽  
Bálint Katona ◽  
Alexandra Kemény ◽  
Dóra Károly

Metal matrix syntactic foams (MMSFs) are becoming increasingly relevant from the lightweight structural materials point of view. They are also used as energy absorbers and as core materials for sandwich structures. The mechanical properties of MMSFs are extensively influenced by the properties of their filler materials which are used to create and ensure the porosity inside the metal matrix. As the properties of fillers are of such importance in the case of MMSFs, in this paper three different filler materials: (i) ceramic hollow spheres (CHSs), (ii) metallic hollow spheres (MHSs) and (iii) lightweight expanded clay particles (LECAPs), have been investigated in numerous aspects. The investigations cover the microstructural features of the fillers and the basic mechanical properties of the fillers and the produced MMSFs as well. The microstructure was studied by optical and electron microscopy extended by energy-dispersive X-ray spectrometry, while the basic mechanical properties were mapped by standardized compression tests. It was found that in the terms of cost-awareness the LECAPs are the best fillers, because they are ~100 times cheaper than the CHSs or MHSs, but their mechanical properties can be compared to the aforementioned, relatively expensive filler materials and still exceed the properties of the most ‘conventional’ metallic foams.


Sign in / Sign up

Export Citation Format

Share Document