Turbine Lubricant Oxidation: Testing, Experience, and Prediction

2008 ◽  
pp. 1-1-26
Author(s):  
AN Smith
Keyword(s):  
Author(s):  
Bruce A. Pint ◽  
Sebastien Dryepondt ◽  
Michael P. Brady ◽  
Yukinori Yamamoto ◽  
Bo Ruan ◽  
...  

Alumina-forming austenitic (AFA) steels represent a new class of corrosion- and creep-resistant austenitic steels designed to enable higher temperature recuperators. Field trials are in progress for commercially rolled foil with widths over 39 cm. The first trial completed 3000 hrs in a microturbine recuperator with an elevated turbine inlet temperature and showed limited degradation. A longer microturbine trial is in progress. A third exposure in a larger turbine has passed 16,000 hrs. To reduce alloy cost and address foil fabrication issues with the initial AFA composition, several new AFA compositions are being evaluated in creep and laboratory oxidation testing at 650–800 °C and the results compared to commercially fabricated AFA foil and conventional recuperator foil performance.


Coatings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 292 ◽  
Author(s):  
Qianqian Jia ◽  
Deyuan Li ◽  
Shumei Li ◽  
Zhuang Zhang ◽  
Nannan Zhang

An Al/Ni composite coating was deposited on the surface of a pure Ti substrate by arc spray technology and plasma spray technology. In order to enable the in-situ reaction between the Al/Ni composite coating and the specimen, they were heated under different conditions. In addition, oxidation testing was conducted to test the oxidation-resistant property of the coating. The phase transition regulation of the coating after heating, the influence of heating at different temperatures and time on the reaction depth, and the correlated theory of the in-situ formation of the NiAl intermetallic compounds were studied and analyzed. The results showed that after the heat treatment, a ragged wave-like morphology was exhibited in the diffusion front of Al, and a small amount of the Ni in the diffusion region did not participate in the reaction. The growth of the NiAl intermetallic layer in the diffusion region of the Al/Ni/Ti specimen was obviously slower compared with the Al/Ni specimen.


Sign in / Sign up

Export Citation Format

Share Document