Field and Laboratory Evaluations of Commercial and Next-Generation Alumina-Forming Austenitic Foil for Advanced Recuperators

Author(s):  
Bruce A. Pint ◽  
Sebastien Dryepondt ◽  
Michael P. Brady ◽  
Yukinori Yamamoto ◽  
Bo Ruan ◽  
...  

Alumina-forming austenitic (AFA) steels represent a new class of corrosion- and creep-resistant austenitic steels designed to enable higher temperature recuperators. Field trials are in progress for commercially rolled foil with widths over 39 cm. The first trial completed 3000 hrs in a microturbine recuperator with an elevated turbine inlet temperature and showed limited degradation. A longer microturbine trial is in progress. A third exposure in a larger turbine has passed 16,000 hrs. To reduce alloy cost and address foil fabrication issues with the initial AFA composition, several new AFA compositions are being evaluated in creep and laboratory oxidation testing at 650–800 °C and the results compared to commercially fabricated AFA foil and conventional recuperator foil performance.

Author(s):  
Bruce A. Pint ◽  
Sebastien Dryepondt ◽  
Michael P. Brady ◽  
Yukinori Yamamoto ◽  
Bo Ruan ◽  
...  

Alumina-forming austenitic (AFA) steels represent a new class of corrosion- and creep-resistant austenitic steels designed to enable higher temperature recuperators. Field trials are in progress for commercially rolled foil with widths over 39cm. The first trial completed 3,000h in a microturbine recuperator with an elevated turbine inlet temperature and showed limited degradation. A longer microturbine trial is in progress. A third exposure in a larger turbine has passed 16,000h. To reduce alloy cost and address foil fabrication issues with the initial AFA composition, several new AFA compositions are being evaluated in creep and laboratory oxidation testing at 650°–800°C and the results compared to commercially fabricated AFA foil and conventional recuperator foil performance.


Author(s):  
Bruce A. Pint ◽  
Sebastien Dryepondt ◽  
Michael P. Brady ◽  
Yukinori Yamamoto

Alumina-forming austenitic (AFA) steels represent a new class of corrosion- and creep-resistance austenitic steels to enable higher temperature recuperators. Several commercial batches of the first AFA composition have been produced with different thicknesses and widths over 39cm. This commercial AFA foil was successfully folded by two manufacturers. Creep and laboratory oxidation results at 650°-800°C are presented to compare to conventional recuperator alloy performance. While this initial effort was successful, concerns with cost and ease of production suggested that a leaner AFA composition with a lower final annealing temperature would be more attractive for commercial applications. Therefore, several new AFA compositions are being evaluated in laboratory trials and compared to the initial material for down selection of a better AFA composition for commercialization.


1967 ◽  
Vol 89 (1) ◽  
pp. 41-46 ◽  
Author(s):  
N. E. Starkey

Design considerations required for base load long-life service at turbine inlet temperature above 1600 F are discussed. These include control of combustion profile, air cooling of the first-stage nozzle, long-shank turbine buckets, accurate air and fuel distribution, and accurate temperature control.


Author(s):  
Paulo Eduardo Batista de Mello ◽  
Sérgio Scuotto ◽  
Fernando dos Santos Ortega ◽  
Gustavo Henrique Bolognesi Donato

Author(s):  
Katsuyoshi Tada ◽  
Kei Inoue ◽  
Tomo Kawakami ◽  
Keijiro Saitoh ◽  
Satoshi Tanimura

Gas-turbine combined-cycle (GTCC) power generation is clean and efficient, and its demand will increase in the future from economic and social perspectives. Raising turbine inlet temperature is an effective way to increase combined cycle efficiency and contributes to global environmental conservation by reducing CO2 emissions and preventing global warming. However, increasing turbine inlet temperature can lead to the increase of NOx emissions, depletion of the ozone layer and generation of photochemical smog. To deal with this issue, MHPS (MITSUBISHI HITACHI POWER SYSTEMS) and MHI (MITSUBISHI HEAVY INDUSTRIES) have developed Dry Low NOx (DLN) combustion techniques for high temperature gas turbines. In addition, fuel flexibility is one of the most important features for DLN combustors to meet the requirement of the gas turbine market. MHPS and MHI have demonstrated DLN combustor fuel flexibility with natural gas (NG) fuels that have a large Wobbe Index variation, a Hydrogen-NG mixture, and crude oils.


Author(s):  
Miki Koyama ◽  
Toshio Mimaki

This aims to put the fruits of the R&D; “The Hydrogen Combustion Turbine” in WE-NET Phase I Program(1993-1998) to practical use at an early stage. The topping regenerating cycle was selected as the optimum cycle, with energy efficiency expected to be more than 60%(HHV) under the conditions of the turbine inlet temperature of 1973K(1700°C) and the pressure of 4.8MPa,in it. • As the turbine inlet temperature and pressure increase, issues to be resolved include the amount of NOx emissions and the durability of super alloys for turbine blades under such thermal conditions. In this respect, the development of the highly efficient methane-oxygen combustion technology, the turbine blade cooling technology, and the ultrahigh-temperature materials including thermal barrier coatings is being carried out. • In 1999, the results made it clear that there are little error among the three analytic programs used to verify the system efficiency, it was verified that the burning rate was going to arrive at over 98% from the methane-oxygen combustion test (under the atmospheric pressure). And the type of vane “Film cooling plus recycle type with internal cooling system” was selected as the most suitable vane.


Author(s):  
Hideto Moritsuka

In order to estimate the possibility to improve thermal efficiency of power generation use gas turbine combined cycle power generation system, benefits of employing the advanced gas turbine technologies proposed here have been made clear based on the recently developed 1500C-class steam cooling gas turbine and 1300C-class reheat cycle gas turbine combined cycle power generation systems. In addition, methane reforming cooling method and NO reducing catalytic reheater are proposed. Based on these findings, the Maximized efficiency Optimized Reheat cycle Innovative Gas Turbine Combined cycle (MORITC) Power Generation System with the most effective combination of advanced technologies and the new devices have been proposed. In case of the proposed reheat cycle gas turbine with pressure ratio being 55, the high pressure turbine inlet temperature being 1700C, the low pressure turbine inlet temperature being 800C, combined with the ultra super critical pressure, double reheat type heat recovery Rankine cycle, the thermal efficiency of combined cycle are expected approximately 66.7% (LHV, generator end).


Author(s):  
Francesco Fantozzi ◽  
Bruno D’Alessandro ◽  
Pietro Bartocci ◽  
Umberto Desideri ◽  
Gianni Bidini

The Integrated Pyrolysis Regenerated Plant (IPRP) concept is based on a rotary kiln pyrolyzer that converts biomass or wastes (B&W) in a rich gas used to fuel a gas turbine (GT); the combustion of pyrolysis by-products (char or tar), is used to provide heat to the pyrolyzer together with the GT exhaust gases. The IPRP concept was modelled through an homemade software, that utilizes thermodynamic relations, energy balances and data available in the Literature for BW pyrolysis products. The analysis was carried out investigating the influence on the plant performances of main thermodynamic parameters like the Turbine Inlet Temperature (TIT), the Regeneration Ratio (RR) and the manometric compression ratio (β) of the gas turbine; when data on the pyrolysis process where available for different pyrolysis temperature, also the different pyrolysis temperature (TP) was considered. Finally, data obtained from the analysis where collected for the typical parameters of different GT sizes, namely the manometric compression ratio and the turbine inlet temperature. For the other parameters, where considered the ones that give the highest efficiencies. The paper shows the IPRP efficiency, when fuelled with different biomass or wastes materials and for different GT (plant) size.


Sign in / Sign up

Export Citation Format

Share Document