Stress Dependency of the (Sand) Subgrade Modulus by the Dead Weight of the Pavement Layers: Field Experiments with the Falling Weight Deflectometer

Author(s):  
AC Pronk
2010 ◽  
Vol 16 (1) ◽  
pp. 123-129 ◽  
Author(s):  
Amir Kavussi ◽  
Shahaboddin Yasrobi

Portable Falling Weight Deflectometer (PFWD) that can be considered as simple equipment is mainly used to measure elastic moduli of pavement unbound layers. This paper evaluates the potential use of PFWD to reliably measure the elastic modulus of pavement layers. To achieve this, PFWD tests were conducted on highway sections selected from different projects in Tehran. The California Bearing Ratio (CBR) laboratory tests were also conducted on samples collected during field tests. PFWD testing parameters were varied while performing the field testing. These included drop weight, drop height, plate diameter and position of additional geophones. In addition, PFWD moduli were compared with those obtained from performing FWD testing on the same site. It was found that drop mass and loading plate size affect PFWD modulus significantly. In addition, the results indicated that good correlation exist between PFWD moduli and FWD and CBR results. Santrauka Nešiojamasis krintančio svorio deflektometras PFWD (angl. portable falling weight deflectometer) yra nesudetingas prietaisas, dažniausiai naudojamas kelio dangu nesurištu sluoksniu tamprumo moduliui nustatyti. Straipsnyje apžvelgta, kaip PFWD naudojamas kelio dangu sluoksniu tamprumo moduliams matuoti. Taikant PFWD išbandyti skirtinguose projektuose Teherane (Iranas) panaudoti kelio dangu skerspjūviai. Bandiniams papildomai atlikti Kalifornijos santykinio atsparumo rodiklio CBR (angl. California bearing ratio) nustatymo eksperimentiniai tyrimai. Atliekant lauko tyrimus naudoti skirtingi PFWD bandymu parametrai: krintantis svoris, kritimo aukštis, plokštes skersmuo ir papildomai išdestyti geofonai. PFWD nustatyti tamprumo moduliai palyginti su tamprumo moduliais, išmatuotais naudojant krintančio svorio deflektometra FWD (angl. falling weight deflectometer). Nustatyta, kad PFWD matavimu rezultatams didele itaka turi kritimo mase ir apkrovimo plokštes matmenys. Gauti eksperimentiniu tyrimu rezultatai parode, kad PFWD, FWD ir CBR matavimai gerai koreliuoja tarpusavyje.


Author(s):  
Mario S. Hoffman

A direct and simple method (YONAPAVE) for evaluating the structural needs of flexible pavements is presented. It is based on interpretation of measured falling-weight deflectometer (FWD) deflection basins using mechanistic and practical approaches. YONAPAVE estimates the effective structural number (SN) and the equivalent subgrade modulus independently of the pavement or layer thicknesses. Thus, there is no need to perform boreholes, which are expensive, time-consuming, and disruptive to traffic. Knowledge of the effective SN and the subgrade modulus together with an estimate of the traffic demand allows the determination of the overlay required to accommodate future needs. YONAPAVE’s simple equations can be solved using a pocket calculator, making it suitable for rapid estimates in the field. The simplicity of the method, and its independence from major computer programs, make YONAPAVE suitable for estimating the structural needs of a road network using FWD data collected on a routine or periodic basis along network roads. YONAPAVE can be used with increased experience and confidence as the basis for nondestructive testing structural evaluation and overlay design at the project level.


2005 ◽  
Vol 42 (2) ◽  
pp. 641-645 ◽  
Author(s):  
Dieter Stolle ◽  
Peijun Guo

The authors present a simplified methodology for preprocessing falling-weight deflectometer (FWD) data, which identify a pseudo-static pavement response to surface loading. This allows one to employ static analysis to back-calculate the mechanical properties of the pavement–subgrade system. It is shown that the subgrade modulus can be identified, independent of the details of the pavement structure itself, at least for a two-layer system. The quality of the effective shear modulus is sensitive to the value of Poisson's ratio selected.Key words: pavement–subgrade system, subgrade modulus, back-calculation, FWD.


1998 ◽  
Vol 25 (1) ◽  
pp. 151-160 ◽  
Author(s):  
Mehdi Parvini ◽  
Dieter FE Stolle

Pavement deflection measurements, together with backcalculation procedures, are widely used to estimate the layer moduli of pavement-subgrade systems. Sensitivity analysis of a sample problem indicates that conclusions drawn from static analyses with regards to deflection sensitivity to variation in layer moduli may apply when characterizing uncertainty associated with the interpretation of the falling weight deflectometer (FWD) data. The uncertainty associated with the values of the backcalculated parameters from deflection data is investigated in this paper using an elastodynamic, stochastic finite element approach. The results of the simulations indicate that, in order to properly estimate surface layer moduli, loading frequencies higher than that of excitation by typical FWD loading are required. The low sensitivity of deflection uncertainty to random variations in surface modulus, when compared with that associated with subgrade modulus, is demonstrated to contribute to high variations in backcalculated surface modulus from measured surface deflections. Although focus is placed on uncertainties in elastic modulus and deflection, the methodology presented in the paper can be used to quantify uncertainties associated with other layer properties and pavement responses.Key words: stochastic, finite element, pavement deflection, elastodynamic, backcalculation, layer moduli, falling weight deflectometer test.


Author(s):  
Dieter F. E. Stolle

The characterization of pavements and subgrades by interpreting falling weight deflectometer data is discussed. Two backcalculation strategies—one based on an approximate elastostatic model and the other on dynamic impedance for a two-layered pavement subgrade system—are presented and applied to data collected along experimental pavement sections. Both strategies characterize the structural integrity of a pavement by equivalent asphalt thickness and the stiffness of the subgrade by effective subgrade modulus. It is indicated that, although both procedures predict similar trends, the values of the system parameters differ, particularly the equivalent asphalt thickness. The net pavement-subgrade stiffness predicted using dynamic impedance was found to be consistently higher than that obtained with the elastostatic model for the data studied. The capability of dynamic impedance to identify variations of in situ conditions along a section of roadway is also demonstrated.


Sign in / Sign up

Export Citation Format

Share Document