Relationship of Fracture Toughness and Ductility to Microstructure and Fractographic Features in Advanced Deep Hardenable Titanium Alloys

2009 ◽  
pp. 115-115-39 ◽  
Author(s):  
FH Froes ◽  
JC Chesnutt ◽  
CG Rhodes ◽  
JC Williams
2013 ◽  
Vol 551 ◽  
pp. 143-160 ◽  
Author(s):  
Ajit Pal Singh ◽  
Brian Gabbitas ◽  
De Liang Zhang

Powder metallurgy (PM) is potentially capable of producing homogeneous titanium alloys at relative low cost compared to ingot metallurgy (IM). There are many established PM methods for consolidating metal powders to near net shapes with a high degree of freedom in alloy composition and resulting microstructural characteristics. The mechanical properties of titanium and its alloys processed using a powder metallurgical route have been studied in great detail; one major concern is that ductility and toughness of materials produced by a PM route are often lower than those of corresponding IM materials. The aim of this paper is to review the fracture toughness of both PM and IM titanium alloys. The effects of critical factors such as interstitial impurities, microstructural features and heat treatment on fracture toughness are also discussed


2009 ◽  
pp. 64-64-51 ◽  
Author(s):  
JC Williams ◽  
FH Froes ◽  
JC Chesnutt ◽  
CG Rhodes ◽  
RG Berryman

2012 ◽  
Vol 430-432 ◽  
pp. 978-983
Author(s):  
Guo Jun Zhang ◽  
Zhi Ping Sun ◽  
Li Yan Zou

VC/Fe composite samples were fabricated by sintering at 1050, 1100 and 1150°C in vacuum. The microstructure and mechanical properties of samples were examined, and the relationship of structure and mechanical properties for VC/Fe composite sintered at different temperature were studied. The results show that fracture toughness, hardness and density is increasing obviously at 1050-1100°Cwith the increasing sintering temperature, but the growth trend increases slowly at 1100-1150°C; in whole process with temperature increased, Flexure strength heighten trend obviously. The microstructure of VC/Fe composite changed from particles piled up together to the microstructure particles closely, VC particles set gradually into Fe with temperature increased, and the gap reduced gradually.


Sign in / Sign up

Export Citation Format

Share Document