Modeling Creep-Fatigue Behavior of Mod.9Cr-1Mo Steel

Author(s):  
Meimei Li ◽  
S. Majumdar ◽  
K. Natesan
2011 ◽  
Vol 8 (9) ◽  
pp. 103824 ◽  
Author(s):  
Meimei Li ◽  
S. Majumdar ◽  
K. Natesan ◽  
A. Saxena ◽  
B. Dogan ◽  
...  

Author(s):  
Jürgen Rudolph ◽  
Adrian Willuweit ◽  
Steffen Bergholz ◽  
Christian Philippek ◽  
Jevgenij Kobzarev

Components of conventional power plants are subject to potential damage mechanisms such as creep, fatigue and their combination. These mechanisms have to be considered in the mechanical design process. Against this general background — as an example — the paper focusses on the low cycle fatigue behavior of a main steam shut off valve. The first design check based on standard design rules and linear Finite Element Analysis (FEA) identifies fatigue sensitive locations and potentially high fatigue usage. This will often occur in the context of flexible operational modes of combined cycle power plants which are a characteristic of the current demands of energy supply. In such a case a margin analysis constitutes a logical second step. It may comprise the identification of a more realistic description of the real operational loads and load-time histories and a refinement of the (creep-) fatigue assessment methods. This constitutes the basis of an advanced component design and assessment. In this work, nonlinear FEA is applied based on a nonlinear kinematic constitutive material model, in order to simulate the thermo-mechanical behavior of the high-Cr steel component mentioned above. The required material parameters are identified based on data of the accessible reference literature and data from an own test series. The accompanying testing campaign was successfully concluded by a series of uniaxial thermo-mechanical fatigue (TMF) tests simulating the most critical load case of the component. This detailed and hybrid approach proved to be appropriate for ensuring the required lifetime period of the component.


2009 ◽  
pp. 462-462-11 ◽  
Author(s):  
PK Venkiteswaran ◽  
DC Ferguson ◽  
DMR Taplin

Author(s):  
Weizhe Wang

A multi-axial continuum damage mechanics (CDM) model was proposed to calculate the multi-axial creep–fatigue damage of a high temperature component. A specific outer cylinder of a 1000 MW supercritical steam turbine was used in this study, and the interaction of the creep and fatigue behavior of the outer cylinder was numerically investigated under a startup–running–shutdown process. To this end, the multi-axial stress–strain behavior of the outer cylinder was numerically studied using Abaqus. The in-site measured temperatures were provided to validate the heat transfer coefficients, which were used to calculate the temperature field of the outer cylinder. The multi-axial mechanics behavior of the outer cylinder was investigated in detail, with regard to the temperature, Mises stress, hydrostatic stress, multi-axial toughness factor, multi-axial creep strain, and damage. The results demonstrated that multi-axial mechanics behavior reduced the total damage.


2009 ◽  
Vol 413-414 ◽  
pp. 725-732 ◽  
Author(s):  
Xiao Cong He

The aim of this study is to investigate the creep-fatigue behavior of stainless steel materials. Based on the elevated-temperature tensile, creep and rupture test data, thermal creep-fatigue modelling was conducted to predict the failure life of stainless steels. In the low cycle thermal fatigue life model, Manson’s Universal Slopes equation was used as an empirical correlation which relates fatigue endurance to tensile properties. Fatigue test data were used in conjunction with different modes to establish the relationship between temperature and other parameters. Then creep models were created for stainless steel materials. In order to correlate the results of short-time elevated temperature tests with long-term service performance at more moderate temperatures, different creep prediction models, namely Basquin model, Sherby-Dorn model and Manson-Haferd model, were studied. Comparison between the different creep prediction models were carried out for a range of stresses and temperatures. A linear damage summation method was used to establish life prediction model of stainless steel materials under creep-fatigue.


2013 ◽  
Vol 794 ◽  
pp. 441-448 ◽  
Author(s):  
G.V. Prasad Reddy ◽  
R. Sandhya ◽  
M.D. Mathew ◽  
S. Sankaran

Low cycle fatigue (LCF) and Creep-fatigue interaction (CFI) behavior of 316LN austenitic stainless steel alloyed with 0.07, 0.11, 0.14, .22 wt.% nitrogen is briefly discussed in this paper. The strain-life fatigue behavior of these steels is found to be dictated by not only cyclic plasticity but also by dynamic strain aging (DSA) and secondary cyclic hardening (SCH). The influence of the above phenomenon on cyclic stress response and fatigue life is evaluated in the present study. The above mentioned steels exhibited both single-and dual-slope strain-life fatigue behavior depending on the test temperatures. Concomitant dislocation substructural evolution has revealed transition in substructures from planar to cell structures justifying the change in slope. The beneficial effect of nitrogen on LCF life is observed to be maximum for 316LN with nitrogen in the range 0.11 - 0.14 wt.%, for the tests conducted over a range of temperatures (773-873 K) and at ±0.4 and 0.6 % strain amplitudes at a strain rate of 3*10-3 s-1. A decrease in the applied strain rate from 3*10-3 s-1 to 3*10-5 s-1 or increase in the test temperature from 773 to 873 K led to a peak in the LCF life at a nitrogen content of 0.07 wt.%. Similar results are obtained in CFI tests conducted with tensile hold periods of 13 and 30 minutes. Fractography studies of low strain rate and hold time tested specimens revealed extensive intergranular cracking.


1988 ◽  
Vol 133 ◽  
Author(s):  
J. K. Tien ◽  
R. S. Bellows

ABSTRACTA modified fatigue test matrix that provided both creep (high mean stress) and fatigue (alternating stress) damage was used to evaluate the creep-fatigue behavior of D.S. Ni3 Al(B,Hf). The three generic regimes of below, at, and above peak yield strength temperature were investigated. It was found that the creep-fatigue resistance of this intermetallic remains high through the three temperature regimes, allowing it to be further considered as a monolith or as the matrix of high-temperature fiber reinforced composite.


Sign in / Sign up

Export Citation Format

Share Document