scholarly journals Additive manufacturing techniques and their biomedical applications

2017 ◽  
Vol 5 (4) ◽  
pp. 286-298 ◽  
Author(s):  
Yujing Liu ◽  
Wei Wang ◽  
Lai-Chang Zhang
2021 ◽  
Vol 21 (5) ◽  
pp. 2778-2792
Author(s):  
Massimo Bonini

Additive manufacturing techniques (i.e., 3D printing) are rapidly becoming one of the most popular methods for the preparation of materials to be employed in many different fields, including biomedical applications. The main reason is the unique flexibility resulting from both the method itself and the variety of starting materials, requiring the combination of multidisciplinary competencies for the optimization of the process. In particular, this is the case of additive manufacturing processes based on the extrusion or jetting of nanocomposite materials, where the unique properties of nanomaterials are combined with those of a flowing matrix. This contribution focuses on the physico-chemical challenges typically faced in the 3D printing of polymeric nanocomposites and polymeric hydrogels intended for biomedical applications. The strategies to overcome those challenges are outlined, together with the characterization approaches that could help the advance of the field.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Flaviana Calignano ◽  
Manuela Galati ◽  
Luca Iuliano ◽  
Paolo Minetola

Additive manufacturing (AM) is a disruptive technology as it pushes the frontier of manufacturing towards a new design perspective, such as the ability to shape geometries that cannot be formed with any other traditional technique. AM has today shown successful applications in several fields such as the biomedical sector in which it provides a relatively fast and effective way to solve even complex medical cases. From this point of view, the purpose of this paper is to illustrate AM technologies currently used in the medical field and their benefits along with contemporary. The review highlights differences in processes, materials, and design of additive manufacturing techniques used in biomedical applications. Successful case studies are presented to emphasise the potentiality of AM processes. The presented review supports improvements in materials and design for future researches in biomedical surgeries using instruments and implants made by AM.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Magda Silva ◽  
Isabel S. Pinho ◽  
José A. Covas ◽  
Natália M. Alves ◽  
Maria C. Paiva

AbstractAdditive manufacturing techniques established a new paradigm in the manufacture of composite materials providing a simple solution to build complex, custom designed shapes. In the biomedical field, 3D printing enabled the production of scaffolds with patient-specific requirements, controlling product architecture and microstructure, and have been proposed to regenerate a variety of tissues such as bone, cartilage, or the nervous system. Polymers reinforced with graphene or graphene derivatives have demonstrated potential interest for applications that require electrical and mechanical properties as well as enhanced cell response, presenting increasing interest for applications in the biomedical field. The present review focuses on graphene-based polymer nanocomposites developed for additive manufacturing fabrication, provides an overview of the manufacturing techniques available to reach the different biomedical applications, and summarizes relevant results obtained with 3D printed graphene/polymer scaffolds and biosensors.


2018 ◽  
Vol 331 ◽  
pp. 74-97 ◽  
Author(s):  
W.S.W. Harun ◽  
N.S. Manam ◽  
M.S.I.N. Kamariah ◽  
S. Sharif ◽  
A.H. Zulkifly ◽  
...  

2020 ◽  
Vol 40 (2) ◽  
pp. 624-638 ◽  
Author(s):  
Patrycja Szymczyk-Ziółkowska ◽  
Magdalena Beata Łabowska ◽  
Jerzy Detyna ◽  
Izabela Michalak ◽  
Piotr Gruber

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1940
Author(s):  
Muhammad Usman Naseer ◽  
Ants Kallaste ◽  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anton Rassõlkin

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.


Author(s):  
Chen Hu ◽  
Malik Haider ◽  
Lukas Hahn ◽  
Mengshi Yang ◽  
Robert Luxenhofer

Hydrogels that can be processed with additive manufacturing techniques and concomitantly possess favorable mechanical properties are interesting for many advanced applications. However, the development of novel ink materials with high...


Sign in / Sign up

Export Citation Format

Share Document