scholarly journals Design of Additively Manufactured Structures for Biomedical Applications: A Review of the Additive Manufacturing Processes Applied to the Biomedical Sector

2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Flaviana Calignano ◽  
Manuela Galati ◽  
Luca Iuliano ◽  
Paolo Minetola

Additive manufacturing (AM) is a disruptive technology as it pushes the frontier of manufacturing towards a new design perspective, such as the ability to shape geometries that cannot be formed with any other traditional technique. AM has today shown successful applications in several fields such as the biomedical sector in which it provides a relatively fast and effective way to solve even complex medical cases. From this point of view, the purpose of this paper is to illustrate AM technologies currently used in the medical field and their benefits along with contemporary. The review highlights differences in processes, materials, and design of additive manufacturing techniques used in biomedical applications. Successful case studies are presented to emphasise the potentiality of AM processes. The presented review supports improvements in materials and design for future researches in biomedical surgeries using instruments and implants made by AM.

2021 ◽  
Vol 21 (5) ◽  
pp. 2778-2792
Author(s):  
Massimo Bonini

Additive manufacturing techniques (i.e., 3D printing) are rapidly becoming one of the most popular methods for the preparation of materials to be employed in many different fields, including biomedical applications. The main reason is the unique flexibility resulting from both the method itself and the variety of starting materials, requiring the combination of multidisciplinary competencies for the optimization of the process. In particular, this is the case of additive manufacturing processes based on the extrusion or jetting of nanocomposite materials, where the unique properties of nanomaterials are combined with those of a flowing matrix. This contribution focuses on the physico-chemical challenges typically faced in the 3D printing of polymeric nanocomposites and polymeric hydrogels intended for biomedical applications. The strategies to overcome those challenges are outlined, together with the characterization approaches that could help the advance of the field.


2021 ◽  
Vol 263 (4) ◽  
pp. 2708-2723
Author(s):  
Manuel Bopp ◽  
Arn Joerger ◽  
Matthias Behrendt ◽  
Albert Albers

Many concepts for acoustic meta materials rely on additive manufacturing techniques. Depending on the production process and material of choice, different levels of precision and repeatability can be achieved. In addition, different materials have different mechanical properties, many of which are frequency dependent and cannot easily be measured directly. In this contribution the authors have designed different resonator elements, which have been manufactured utilizing Fused Filament Fabrication with ABSplus and PLA, as well as PolyJet Fabrication with VeroWhitePlus. All structures are computed in FEA to obtain the calculated Eigenfrequencies and mode shapes, with the respective literature values for each material. Furthermore, the dynamic behavior of multiple instances of each structure is measured utilizing a 3D-Laser-Scanning Vibrometer under shaker excitation, to obtain the actual Eigenfrequencies and mode shapes. The results are then analyzed in regards to variance between different print instances, and in regards to accordance between measured and calculated results. Based on previous work and this analysis the parameters of the FEA models are updated to improve the result quality.


2019 ◽  
Vol 34 (5) ◽  
pp. 1093-1105 ◽  
Author(s):  
Christina Öberg ◽  
Tawfiq Shams

Purpose With the overarching idea of disruptive technology and its effects on business, this paper focuses on how companies strategically consider meeting the challenge of a disruptive technology such as additive manufacturing. The purpose of this paper is to describe and discuss changes in positions and roles related to the implementation of a disruptive technology. Design/methodology/approach Additive manufacturing could be expected to have different consequences for parties based on their current supply chain positions. The paper therefore investigates companies’ strategies related to various supply chain positions and does so by departing from a position and role point of view. Three business cases related to metal 3D printing - illustrating sub-suppliers, manufacturers and logistics firms - describe as many strategies. Data for the cases were collected through meetings, interviews, seminars and secondary data focusing on both current business activities related to additive manufacturing and scenarios for the future. Findings The companies attempted to defend their current positions, leading to new roles for them. This disconnects the change of roles from that of positions. The changed roles indicate that all parties, regardless of supply chain positions, would move into competing producing roles, thereby indicating how a disruptive technology may disrupt network structures based on companies’ attempts to defend their positions. Originality/value The paper contributes to previous research by reporting a disconnect between positions and roles among firms when disruption takes place. The paper further denotes how the investigated firms largely disregarded network consequences at the disruptive stage, caused by the introduction of additive manufacturing. The paper also contributes to research on additive manufacturing by including a business dimension and linking this to positions and roles.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 261 ◽  
Author(s):  
Jon Iñaki Arrizubieta ◽  
Olatz Ukar ◽  
Marta Ostolaza ◽  
Arantza Mugica

Additive Manufacturing, AM, is considered to be environmentally friendly when compared to conventional manufacturing processes. Most researchers focus on resource consumption when performing the corresponding Life Cycle Analysis, LCA, of AM. To that end, the sustainability of AM is compared to processes like milling. Nevertheless, factors such as resource use, pollution, and the effects of AM on human health and society should be also taken into account before determining its environmental impact. In addition, in powder-based AM, handling the powder becomes an issue to be addressed, considering both the operator´s health and the subsequent management of the powder used. In view of these requirements, the fundamentals of the different powder-based AM processes were studied and special attention paid to the health risks derived from the high concentrations of certain chemical compounds existing in the typically employed materials. A review of previous work related to the environmental impact of AM is presented, highlighting the gaps found and the areas where deeper research is required. Finally, the implications of the reuse of metallic powder and the procedures to be followed for the disposal of waste are studied.


2018 ◽  
Vol 771 ◽  
pp. 97-102 ◽  
Author(s):  
Andrey Ripetskiy ◽  
Stanislav Vassilyev ◽  
Sergey Zelenov ◽  
Ekaterina Kuznetsova

The mathematical methods and examples considered in the article allow efficient modeling of additive manufacturing processes by formulating a number of new criteria for geometry evaluation for compliance with the technological limitations of the additive manufacturing techniques. The aim of the research is the development of the new techniques, methods, algorithms and structured data aimed to validate the entire chain of additive manufacturing process.


Author(s):  
Abhinav Bhardwaj ◽  
Scott Z. Jones ◽  
Negar Kalantar ◽  
Zhijian Pei ◽  
John Vickers ◽  
...  

Additive manufacturing (AM) has had an enormous impact on the manufacturing sector. Its role has evolved from printing prototypes to manufacturing functional parts for a variety of applications in the automotive, aerospace, and medical industries. Recently, AM processes have also been applied in the infrastructure construction industry. Applications of AM processes could bring in significant improvements in infrastructure construction, specifically in the areas of productivity and safety. It is desirable to have a review on the current state of emerging AM processes for infrastructure construction and existing gaps in this field. This paper reviews the AM processes in infrastructure construction. It discusses the process principle, application examples, and gaps for each of the AM processes.


Author(s):  
R. Ponche ◽  
O. Kerbrat ◽  
P. Mognol ◽  
J. Y. Hascoet

Additive Manufacturing (AM) is a new way of part production which opens up new perspectives of conception as mass and cost reduction and increase of functionalities. However these processes have their own characteristics which as for all the manufacturing processes have a direct impact on the manufactured parts quality. Especially, because the manufacturing trajectories have a influence on the physical phenomena during the process, they have also a strong impact on the quality of the produced parts in terms of geometry. In this paper, the choice of manufacturing trajectories and their impacts on the final shape and quality of the parts is integrated into a global Design For Additive Manufacturing (DFAM) methodology which allows to move from functional specifications of a design problem to a proposition of an adapted part for AM processes.


Author(s):  
Pil-Ho Lee ◽  
Haseung Chung ◽  
Sang Won Lee ◽  
Jeongkon Yoo ◽  
Jeonghan Ko

This paper reviews the state-of-the-art research related to the dimensional accuracy in additive manufacturing (AM) processes. It is considered that the improvement of dimensional accuracy is one of the major scientific challenges to enhance the qualities of the products by AM. This paper analyzed the studies for commonly used AM techniques with respect to dimensional accuracy. These studies are classified by process characteristics, and relevant accuracy issues are examined. The accuracies of commercial AM machines are also listed. This paper also discusses suggestions for accuracy improvement. With the increase of the dimensional accuracy, not only the application of AM processes will diversify but also their value will increase.


Sign in / Sign up

Export Citation Format

Share Document