Dynamic Response of a Simply Supported Plate Due to Excitation at Different Points

Author(s):  
MD. SHAHRIAR ◽  
MD. ZAHID ◽  
MIR MD.
Author(s):  
Ciro A. Soto ◽  
Alejandro R. Diaz

Abstract A model to compute average properties for Mindlin plates of rapidly varying thickness was introduced in [SOT93]. The model was designed to be of use in computations of the optimum shape and layout of plates using the technique introduced by Bendsøe and Kikuchi [BEN88]. In this paper we discuss the utilization of the model to determine the optimum layout of plate structures that maximizes a function of the structure’s natural frequencies. A simply supported square plate is used to illustrate the problem of optimization in the presence of repeated natural frequencies. An automotive application is presented to illustrate the usefulness in design practice.


2011 ◽  
Vol 255-260 ◽  
pp. 1825-1829
Author(s):  
Jian Qing Bu ◽  
Gen Wang Li

The purpose of this paper, for which a finite element bridge model with 7 degrees of freedom per node and the 1/4 vehicle model with six parameters were established, is to analyze the dynamic response of curved girder bridges under vehicular loads. In the numerical simulation, the vibration characteristics of simply-supported curved girder bridge are analyzed, and the effect to the impact factors were also studied for different radiuses of curvature, eccentricities, ratios between bending and torsion stiffness, and vehicle speeds. The simulated results show that not all the first 5 natural frequencies increase with the variation of radius of curvature. The impact factor variations of vertical deflection and torsion angle are not uniform when parameters changed, and the impact factor of torsion angle would be much larger than that of vertical deflection under the same conditions.


2019 ◽  
Vol 9 (10) ◽  
pp. 2162 ◽  
Author(s):  
Lizhong Jiang ◽  
Yuntai Zhang ◽  
Yulin Feng ◽  
Wangbao Zhou ◽  
Zhihua Tan

The dynamic response of a simply supported double-beam system under moving loads was studied. First, in order to reduce the difficulty of solving the equation, a finite sin-Fourier transform was used to transform the infinite-degree-of-freedom double-beam system into a superimposed two-degrees-of-freedom system. Second, Duhamel’s integral was used to obtain the analytical expression of Fourier amplitude spectrum function considering the initial conditions. Finally, based on finite sin-Fourier inverse transform, the analytical expression of dynamic response of a simply supported double-beam system under moving loads was deduced. The dynamic response under successive moving loads was calculated by the analytical method and the general FEM software ANSYS. The analysis results show that the analytical method calculation results are consistent with ANSYS’ calculation, thus validating the analytical calculation method. The simply supported double-beam system had multiple critical speeds, and the flexural rigidity significantly affected both peak vertical displacement and critical speed.


1978 ◽  
Vol 100 (4) ◽  
pp. 326-332 ◽  
Author(s):  
Y. I. Chung ◽  
J. Genin

The dynamic response of a vehicle, with a conventional suspension system, traversing a multispan simply supported guideway system is studied parametrically. The steady state response of the system and conditions for dynamic instabilities are presented for the case where the ratio of vehicle length/span length is small. Using vehicle heave acceleration and maximum guideway deflection as performance criteria, it is shown that the interactive inertial effect is significant, even at relatively low traversing speeds.


Sign in / Sign up

Export Citation Format

Share Document