scholarly journals Dopaminergic Regulation of Neuronal Excitability through Modulation of Ih in Layer V Entorhinal Cortex

2006 ◽  
Vol 26 (12) ◽  
pp. 3229-3244 ◽  
Author(s):  
J. A. Rosenkranz
1998 ◽  
Vol 80 (3) ◽  
pp. 1547-1551 ◽  
Author(s):  
Nadav Astman ◽  
Michael J. Gutnick ◽  
Ilya A. Fleidervish

Astman, Nadav, Michael J. Gutnick, and Ilya A. Fleidervish. Activation of protein kinase C increases neuronal excitability by regulating persistent Na+ current in mouse neocortical slices. J. Neurophysiol. 80: 1547–1551, 1998. Effects of the protein kinase C activating phorbol ester, phorbol 12-myristate 13-acetate (PMA), were studied in whole cell recordings from layer V neurons in slices of mouse somatosensory neocortex. PMA was applied intracellularly (100 nM to 1 μM) to restrict its action to the cell under study. In current-clamp recordings, it enhanced neuronal excitability by inducing a 10- to 20-mV decrease in voltage threshold for action-potential generation. Because spike threshold in neocortical neurons critically depends on the properties of persistent Na+ current ( I NaP), effects of PMA on this current were studied in voltage clamp. After blocking K+ and Ca2+ currents, I NaP was revealed by applying slow depolarizing voltage ramps from −70 to 0 mV. Intracellular PMA induced a decrease in I NaP at very depolarized membrane potentials. It also shifted activation of I NaP in the hyperpolarizing direction, however, such that there was a significant increase in persistent inward current at potentials more negative than −45 mV. When tetrodotoxin (TTX) was added to the bath, blocking I NaP and leaving only an outward nonspecific cationic current ( I cat), PMA had no apparent effect on responses to voltage ramps. Thus PMA did not affect I cat, and it did not induce any additional current. Intracellular application of the inactive PMA analogue, 4α-PMA, did not affect I NaP. The specific protein kinase C inhibitors, chelerythrine (20 μM) and calphostin C (10 μM), blocked the effect of PMA on I NaP. The data suggest that PMA enhances neuronal excitability via a protein kinase C–mediated increase in I NaP at functionally critical subthreshold voltages. This novel effect would modulate all neuronal functions that are influenced by I NaP, including synaptic integration and active backpropagation of action potential from the soma into the dendrites.


2000 ◽  
Vol 83 (5) ◽  
pp. 2519-2525 ◽  
Author(s):  
D. Ieuan Evans ◽  
Roland S. G. Jones ◽  
Gavin Woodhall

The role of group III metabotropic glutamate receptors (mGluRs) in modulating excitatory synaptic transmission was investigated in the rat entorhinal cortex (EC) in vitro. AMPA receptor-mediated excitatory postsynaptic currents (EPSCs) were recorded in the whole cell configuration of the patch-clamp technique from visually identified neurons in layers V and II. In layer V, bath application of the specific group III mGluR agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4, 500 μM) resulted in a marked facilitation of both spontaneous and activity-independent “miniature” (s/mEPSC) event frequency. The facilitatory effect of L-AP4 (100 μM) on sEPSC frequency prevailed in the presence ofdl−2-amino-5-phosphonopentanoic acid (100 μM) but was abolished by the group III antagonist (RS)-cyclopropyl-4-phosphonophenylglycine (20 μM). These data confirmed that group III mGluRs, and not N-methyl-d-aspartate (NMDA) receptors were involved in the response to L-AP4. Bath application of the specific mGluR4a agonist (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid (20 μM) also had a facilitatory effect on sEPSC frequency, suggesting involvement of mGluR4a. In layer II neurons, L-AP4 caused a reduction in sEPSC frequency but did not affect mEPSCs recorded in the presence of tetrodotoxin. These findings suggest that a group III mGluR with mGluR4a-like pharmacology is involved in modulating synaptic transmission in layer V cells of the EC. The effect on mEPSCs suggests that this receptor is located presynaptically and that its activation results in a direct facilitation of glutamate release. This novel facilitatory effect is specific to layer V and, to our knowledge, is the first report of a direct facilitatory action of group III mGluRs on synaptic transmission. In layer II, L-AP4 had an inhibitory effect on glutamate release similar to that reported in other brain regions.


2019 ◽  
Vol 122 (3) ◽  
pp. 1163-1173 ◽  
Author(s):  
Li-Yuan Chen ◽  
Maxime Lévesque ◽  
Massimo Avoli

The potassium-chloride cotransporter 2 (KCC2) plays a role in epileptiform synchronization, but it remains unclear how it influences such a process. Here, we used tetrode recordings in the in vitro rat entorhinal cortex (EC) to analyze the effects of the KCC2 antagonist VU0463271 on 4-aminopyridine (4AP)-induced ictal and interictal activity. During 4AP application, ictal events were associated with significant increases in interneurons and principal cells activities. VU0463271 application transformed ictal discharges to shorter ictal-like events that were not accompanied by significant increases in interneuron or principal cell firing. Interictal events persisted during VU0463271 application at an accelerated frequency of occurrence with significant increases in interneuron and principal cell activity. Further analysis revealed that interneuron and principal cell firing rate during 4AP-induced interictal events were increased after VU0463271 application without changes in synchronicity. Overall, our results demonstrate that in the EC, KCC2 antagonism enhances both interneuron and principal cell excitability, while paradoxically decreasing the ability of neuronal networks to generate structured ictal events. NEW & NOTEWORTHY We are the first to use tetrode recordings in the entorhinal cortex to demonstrate that antagonizing potassium-chloride cotransporter 2 (KCC2) function abolishes ictal discharges and the associated, dynamic changes in single-unit firing in the in vitro 4-aminopyrine model of epileptiform synchronization. Interictal discharges were, however, shorter and more frequent during KCC2 antagonism, while the associated single-unit activity increased, suggesting augmented neuronal excitability. Our findings highlight the complex role of KCC2 in disease pathology.


2011 ◽  
Vol 105 (3) ◽  
pp. 1372-1379 ◽  
Author(s):  
Sonia Gasparini

Layer V principal neurons of the medial entorhinal cortex receive the main hippocampal output and relay processed information to the neocortex. Despite the fundamental role hypothesized for these neurons in memory replay and consolidation, their dendritic features are largely unknown. High-speed confocal and two-photon Ca2+ imaging coupled with somatic whole cell patch-clamp recordings were used to investigate spike back-propagation in these neurons. The Ca2+ transient associated with a single back-propagating action potential was considerably smaller at distal dendritic locations (>200 μm from the soma) compared with proximal ones. Perfusion of Ba2+ (150 μM) or 4-aminopyridine (2 mM) to block A-type K+ currents significantly increased the amplitude of the distal, but not proximal, Ca2+ transients, which is strong evidence for an increased density of these channels at distal dendritic locations. In addition, the Ca2+ transients decreased with each subsequent spike in a 20-Hz train; this activity-dependent decrease was also more prominent at more distal locations and was attenuated by the perfusion of the protein kinase C activator phorbol-di-acetate. These data are consistent with a phosphorylation-dependent control of back-propagation during trains of action potentials, attributable mainly to an increase in the time constant of recovery from voltage-dependent inactivation of dendritic Na+ channels. In summary, dendritic Na+ and A-type K+ channels control spike back-propagation in layer V entorhinal neurons. Because the activity of these channels is highly modulated, the extent of the dendritic Ca2+ influx is as well, with important functional implications for dendritic integration and associative synaptic plasticity.


2013 ◽  
Vol 109 (2) ◽  
pp. 445-463 ◽  
Author(s):  
Anne Boehlen ◽  
Christian Henneberger ◽  
Uwe Heinemann ◽  
Irina Erchova

The temporal lobe is well known for its oscillatory activity associated with exploration, navigation, and learning. Intrinsic membrane potential oscillations (MPOs) and resonance of stellate cells (SCs) in layer II of the entorhinal cortex are thought to contribute to network oscillations and thereby to the encoding of spatial information. Generation of both MPOs and resonance relies on the expression of specific voltage-dependent ion currents such as the hyperpolarization-activated cation current ( IH), the persistent sodium current ( INaP), and the noninactivating muscarine-modulated potassium current ( IM). However, the differential contributions of these currents remain a matter of debate. We therefore examined how they modify neuronal excitability near threshold and generation of near-threshold MPOs and resonance in vitro. We found that resonance mainly relied on IH and was reduced by IH blockers and modulated by cAMP and an IM enhancer but that neither of the currents exhibited full control over MPOs in these cells. As previously reported, IH controlled a theta-frequency component of MPOs such that blockade of IH resulted in fewer regular oscillations that retained low-frequency components and high peak amplitude. However, pharmacological inhibition and augmentation of IM also affected MPO frequencies and amplitudes. In contrast to other cell types, inhibition of INaP did not result in suppression of MPOs but only in a moderation of their properties. We reproduced the experimentally observed effects in a single-compartment stochastic model of SCs, providing further insight into the interactions between different ionic conductances.


2002 ◽  
Vol 451 (1) ◽  
pp. 45-61 ◽  
Author(s):  
Bassam N. Hamam ◽  
David G. Amaral ◽  
Angel A. Alonso
Keyword(s):  

2020 ◽  
Author(s):  
Marc Duque ◽  
Corinne A. Lee-Kubli ◽  
Yusuf Tufail ◽  
Uri Magaram ◽  
Jose Mendoza Lopez ◽  
...  

Our understanding of the nervous system has been fundamentally advanced by light- and small molecule-sensitive proteins that can be used to modify neuronal excitability. However, optogenetics requires invasive instrumentation while chemogenetics lacks temporal control. Here, we identify a candidate channel that confers sensitivity to non-invasive ultrasound on millisecond timescales. Using a functional screen, we find that human Transient Receptor Potential A1 (hsTRPA1) increases ultrasound-evoked intracellular calcium levels and membrane potentials. Ultrasound, but not agonist, -evoked, gating of hsTRPA1, requires the N-terminal tip region, intact actin cytoskeleton, and cholesterol, implicating these features in the sonogenetic mechanism. We then use calcium imaging and electrophysiology to confirm that ultrasound-evoked responses of primary neurons are potentiated by hsTRPA1. We also show that unilateral expression of hsTRPA1 in mouse layer V motor cortical neurons leads to ultrasound-evoked contralateral limb responses to ultrasound delivered through an intact skull. Finally, ultrasound induces c-fos in hsTRPA1-expressing neurons, suggesting that our approach can be used for targeted activation of neural circuits. Together, our results demonstrate that hsTRPA1-based sonogenetics can effectively and non-invasively modulate neurons within the intact mammalian brain, a method that could be extended to other cell types across species.


2020 ◽  
Vol 30 (11) ◽  
pp. 5667-5685 ◽  
Author(s):  
Isabel Del Pino ◽  
Chiara Tocco ◽  
Elia Magrinelli ◽  
Andrea Marcantoni ◽  
Celeste Ferraguto ◽  
...  

Abstract The formation of functional cortical maps in the cerebral cortex results from a timely regulated interaction between intrinsic genetic mechanisms and electrical activity. To understand how transcriptional regulation influences network activity and neuronal excitability within the neocortex, we used mice deficient for Nr2f1 (also known as COUP-TFI), a key determinant of primary somatosensory (S1) area specification during development. We found that the cortical loss of Nr2f1 impacts on spontaneous network activity and synchronization of S1 cortex at perinatal stages. In addition, we observed alterations in the intrinsic excitability and morphological features of layer V pyramidal neurons. Accordingly, we identified distinct voltage-gated ion channels regulated by Nr2f1 that might directly influence intrinsic bioelectrical properties during critical time windows of S1 cortex specification. Altogether, our data suggest a tight link between Nr2f1 and neuronal excitability in the developmental sequence that ultimately sculpts the emergence of cortical network activity within the immature neocortex.


Sign in / Sign up

Export Citation Format

Share Document