scholarly journals Elevation Effects on Growth Pattern and Resource Allocation of Picea crassifolia in Qilian Mountains, Northwest China

Author(s):  
Huijun Qin ◽  
Liang Jiao ◽  
Yi Zhou ◽  
Fang Li ◽  
Chunni Li
Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 817 ◽  
Author(s):  
Lingnan Zhang ◽  
Hui Li ◽  
Yilin Ran ◽  
Keyi Wang ◽  
Xiaomin Zeng ◽  
...  

Increasing evidence suggests that extreme droughts cause more frequent tree growth reduction. To understand the consequences of these droughts better, this study used tree-ring cores from nine sites to investigate how moisture and altitudinal gradients affect the radial growth of Picea crassifolia Kom., a common species in the Qilian Mountains in northwest China. The total annual precipitation and mean annual temperature in the eastern region were higher than those in the western region of the Qilian Mountains. The trees in the eastern region showed stronger resistance to drought than those in the west, as they had a smaller difference in radial growth between drought disturbance and pre-drought disturbance. At the same time, the trees in the east showed weaker ability to recover from drought, as they had a subtle difference in radial growth between post-drought disturbance and drought disturbance. Furthermore, the trees in the east also showed weaker relative resilience to drought, as they had a small difference in radial growth between post-drought and drought disturbance weighted by growth in pre-drought disturbance. For trees below 3000 m a.s.l., trees with high resistance capacity usually had low recovery capacity and low relative resilience capacity. Trees at higher altitudes also showed stronger resistance to drought and weaker ability to recover from drought after a drought event than those at lower altitudes in the middle of the Qilian Mountains. Trees at lower altitudes in the middle of the Qilian Mountains had more difficulties recovering from more severe and longer drought events. In the context of global warming, trees in the western region and at lower altitudes should be given special attention and protection in forest management to enhance their resistance to extreme droughts.


2013 ◽  
Vol 45 (4) ◽  
pp. 491-499 ◽  
Author(s):  
LinLin Gao ◽  
XiaoHua Gou ◽  
Yang Deng ◽  
MeiXue Yang ◽  
ZhiQian Zhao ◽  
...  

Trees ◽  
2016 ◽  
Vol 31 (2) ◽  
pp. 455-465 ◽  
Author(s):  
Lingnan Zhang ◽  
Yuan Jiang ◽  
Shoudong Zhao ◽  
Xinyu Kang ◽  
Wentao Zhang ◽  
...  

2019 ◽  
Vol 51 (5) ◽  
Author(s):  
Qingtao Wang ◽  
Chuanyan Zhao ◽  
Yunpu Zheng ◽  
Muhammad Waseem Ashiq ◽  
Xiaoping Wang ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1015
Author(s):  
Xuan Wu ◽  
Liang Jiao ◽  
Dashi Du ◽  
Changliang Qi ◽  
Ruhong Xue

It is important to explore the responses of radial tree growth in different regions to understand growth patterns and to enhance forest management and protection with climate change. We constructed tree ring width chronologies of Picea crassifolia from different regions of the Qilian Mountains of northwest China. We used Pearson correlation and moving correlation to analyze the main climate factors limiting radial growth of trees and the temporal stability of the growth–climate relationship, while spatial correlation is the result of further testing the first two terms in space. The conclusions were as follows: (1) Radial growth had different trends, showing an increasing followed by a decreasing trend in the central region, a continuously increasing trend in the eastern region, and a gradually decreasing trend in the isolated mountain. (2) Radial tree growth in the central region and isolated mountains was constrained by drought stress, and tree growth in the central region was significantly negatively correlated with growing season temperature. Isolated mountains showed a significant negative correlation with mean minimum of growing season and a significant positive correlation with total precipitation. (3) Temporal dynamic responses of radial growth in the central region to the temperatures and SPEI (the standardized precipitation evapotranspiration index) in the growing season were unstable, the isolated mountains to total precipitation was unstable, and that to SPEI was stable. The results of this study suggest that scientific management and maintenance plans of the forest ecosystem should be developed according to the response and growth patterns of the Qinghai spruce to climate change in different regions of the Qilian Mountains.


Sign in / Sign up

Export Citation Format

Share Document