Moss coverage improves the microclimates of subalpine forests: implications of Qinghai spruce recruitment in Qilian Mountains, northwest China

2019 ◽  
Vol 51 (5) ◽  
Author(s):  
Qingtao Wang ◽  
Chuanyan Zhao ◽  
Yunpu Zheng ◽  
Muhammad Waseem Ashiq ◽  
Xiaoping Wang ◽  
...  
2021 ◽  
Vol 66 ◽  
pp. 125813
Author(s):  
Sheng-chun Xiao ◽  
Xiao-mei Peng ◽  
Quan-yan Tian ◽  
Ai-jun Ding

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3354
Author(s):  
Zhihua Zhang ◽  
Qiudong Zhao ◽  
Shiqiang Zhang

The observed precipitation was suggestive of abundant precipitation in upstream Qilian mountains and low precipitation in the downstream oasis and desert in an endorheic basin. However, precipitation in mountains generated from the recycled moisture over oasis and desert areas has rarely been studied. The climatological patterns of water vapor from 1980 to 2017 in the Qilian Mountain Region (QMR) and Hexi Corridor Region (HCR) were investigated by the European Centre for Medium-Range Weather Forecasts Interim reanalysis dataset and the Modern-Era Retrospective Analysis for Research and Application, Version 2 reanalysis dataset. The results suggest that the precipitable water content decreases from the adjacent to the mountain areas. There are two channels that transport water vapor from the HCR to the QMR in the low troposphere (surface—600 hPa), suggesting that parts of recycled moisture generated from evapotranspiration over the oasis and desert of the HCR is transported to the QMR, contributing to the abundant precipitation in the QMR. This indicates that the transport mechanism is probably because of the “cold and wet island effect” of the cryosphere in QMR. This is likely one of the essential mechanisms of the water cycle in endorheic river basins, which has rarely been reported.


Sign in / Sign up

Export Citation Format

Share Document