scholarly journals Influence Analysis of Mine Flooding from the Environmental Standpoint: Surface Protection

2018 ◽  
Vol 27 (2) ◽  
pp. 905-915
Author(s):  
Marek Wesołowski ◽  
Ryszard Mielimąka ◽  
Rafał Jendruś ◽  
Marcin Popczyk
2011 ◽  
Vol 67 (2) ◽  
pp. 319-344
Author(s):  
신규용 ◽  
Oh,Myoungho ◽  
김두형 ◽  
이영수 ◽  
신내호
Keyword(s):  

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 170
Author(s):  
Songqiang Huang ◽  
Jingzhong Zhou ◽  
Kuoteng Sun ◽  
Hailiang Yang ◽  
Weichen Cai ◽  
...  

Nickel-based alloys are commonly used as protective coating materials for surface protection applications owing to their superior resistance to corrosion, wear and high-temperature oxidation. It is urgent to study the fundamental mechanism between the structure and corrosion properties of the Nickel-base composite coatings. This paper, therefore, focuses on clarifying the mechanisms of the microstructure influencing the acid corrosion and mechanical characteristics of the as-sprayed NiCrBSi coating and post-heat-treated coating. The formation mechanisms of the amorphous phase of flat particles during the plasma spray process were studied by using X-ray diffraction analysis, Raman spectroscopy and confocal laser scanning microscope at first. Then the evolutionary process of the corrosion structure and phase of the coating in the accelerated corrosion experiment is directly visualized by using scanning electron microscopy and energy spectrum analysis. The mechanical properties of the amorphous NiCrBSi coatings are lastly measured by microhardness and friction wear tests. The critical phenomena and results help to elucidate the relative influence of the surface features of atmospheric plasma sprayed coatings on acid corrosion responses and wear resistance, aiming at contributing to the development of a protective technique for electrical engineering.


2021 ◽  
Vol 11 (7) ◽  
pp. 3050
Author(s):  
Eva M. García del Toro ◽  
Daniel Alcala-Gonzalez ◽  
María Isabel Más-López ◽  
Sara García-Salgado ◽  
Santiago Pindado

Silicon is the main element in the composition of glass and it has been seen that it can be used as a partial replacement for cement in the manufacture of concrete. Different dosages of glass powder and cement were applied to manufacture the concrete mixes. Initially, the characteristics of fresh concrete were studied, such as consistency, air content, apparent density and workability. Secondly, compressive strength tests were performed on the different concrete mixtures produced. The consistency tests allowed us to classify these concretes within the group of fluids. The air content of these concretes increased with the rate of substitution of cement by glass powder, resulting in lighter concretes. Density tests showed that this parameter decreased as the rate of substitution of cement increased. A coefficient k has been calculated for the substitution of glass powder by cement in the binder, using the Bolomey formula. Also, a mathematical model has been proposed to further analyze the experimental data. Major contributions of this work were to study the possible application of this concrete in different dispersions as a surface protection layer against the action of corrosion, in wind turbine foundations as well as the stabilization of the wind farm roads.


2021 ◽  
Vol 1037 (1) ◽  
pp. 012012
Author(s):  
S Martín-Béjar ◽  
F J Trujillo ◽  
C Bermudo ◽  
M Herrera ◽  
L Sevilla

Author(s):  
Xiang LIU ◽  
Yan JIA ◽  
Rong JIANG ◽  
Yong QUAN

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 106
Author(s):  
Akbar Ali Samsath Begum ◽  
Raja Mohamed Abdul Vahith ◽  
Vijay Kotra ◽  
Mohammed Rafi Shaik ◽  
Abdelatty Abdelgawad ◽  
...  

In the present study, the corrosion inhibition effect of Spilanthes acmella aqueous leaves extract (SA-LE) on mild steel was investigated in 1.0 M HCl solution at different temperature using weight loss, Tafel polarization, linear polarization resistance (LPR), and electrochemical impedance (EIS) measurements. Adsorption of inhibitor on the surface of the mild steel obeyed both Langmuir and Temkin adsorption isotherms. The thermodynamic and kinetic parameters were also calculated to determine the mechanism of corrosion inhibition. The inhibition efficiency was found to increase with an increase in the inhibitor concentration i.e., Spilanthes acmella aqueous leaves extract, however, the inhibition efficiency decreased with an increase in the temperature. The phytochemical constituents with functional groups including electronegative hetero atoms such as N, O, and S in the extract adsorbed on the metal surface are found responsible for the effective performance of the inhibitor, which was confirmed by Fourier-transform infrared spectroscopy (FT-IR) and ultraviolet–visible spectroscopic (UV-Vis) studies. Protective film formation against corrosion was confirmed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle studies. The result shows that the leaves extract acts as corrosion inhibitor and is able to promote surface protection by blocking active sites on the metal.


Sign in / Sign up

Export Citation Format

Share Document