scholarly journals Novel Advanced Treatment of Physically Treated Effluent from Herbal Decoction Pieces Wastewater Using a Combined Ozone/Persulfate-UBAF Process

2019 ◽  
Vol 28 (4) ◽  
pp. 2857-2866 ◽  
Author(s):  
Guomin Tang ◽  
Weiyu Chen ◽  
Yujiang Wei ◽  
Ting Shao ◽  
Mengyuan Zhang ◽  
...  
Author(s):  
Ke Feng ◽  
Shiqi Mu ◽  
Jie Bai ◽  
Qibin Li

In this study a microwave-enhanced and iron-carbon (Fe-C)-activated H2O2 process (MW/Fe-C/H2O2) was applied to the advanced treatment of biologically treated effluent from a semi-aerobic aged refuse biofilter (SAARB). The enhancement...


2018 ◽  
Vol 77 (7) ◽  
pp. 1899-1908 ◽  
Author(s):  
Güçlü Insel ◽  
Ahmet Karagunduz ◽  
Murat Aksel ◽  
Emine Cokgor ◽  
Gokce Kor-Bicakci ◽  
...  

Abstract In this study, an integrated aerobic membrane bioreactor (MBR)-nanofiltration (NF) system has been applied for advanced treatment of Opium processing wastewaters to comply with strict discharge limits. Aerobic MBR treatment was successfully applied to high strength industrial wastewater. In aerobic MBR treatment, a non-fouling unique slot aeration system was designed using computational fluid dynamics techniques. The MBR was used to separate treated effluent from dispersed and non-settleable biomass. Respirometric modeling using MBR sludge indicated that the biomass exhibited similar kinetic parameters to that of municipal activated sludge systems. Aerobic MBR/NF treatment reduced chemical oxygen demand (COD) from 32,000 down to 2,500 and 130 mg/L, respectively. The MBR system provided complete removal of total inorganic nitrogen; however, nearly 50 mgN/L organic nitrogen remained in the permeate. Post NF treatment after MBR permeate reduced nitrogen below 20 mgN/L, providing nearly total color removal. In addition, a 90% removal in the conductivity parameter was reached with an integrated MBR/NF system. Finally, post NF application to MBR permeate was found not to be practical at higher pH due to low flux (3–4 L/m2/hour) with low recovery rates (30–40%). As the permeate pH lowered to 5.5, 75% of NF recovery was achieved at a flux of 15 L/m2/hour.


2001 ◽  
Vol 44 (1) ◽  
pp. 129-135 ◽  
Author(s):  
Jaap H.J.M. van der Graaf

In the Netherlands, interest in advanced treatment is increasing now that almost all wastewater treatment plants apply full biological treatment and nutrient removal. The resulting effluents have an excellent quality which can be improved further by applying advanced treatment processes like flocculating filtration, membrane filtration, UV or activated carbon, and others. The treated effluent can be re-used for various purposes, as process water, household water, urban water, for groundwater suppletion and drinking water. Nowadays many applications are investigated. In order to confirm the applicability pilot test investigations are done at various WWTPs. The results are promising; the cost estimations show increasing prospects. This will finally lead to the maturity of the advanced treatment. It will certainly contribute to a more sustainable water cycle.


2019 ◽  
Vol 9 (4) ◽  
pp. 452-462 ◽  
Author(s):  
Cao Shiwei ◽  
Jing Zhaoqian ◽  
Yuan Peng ◽  
Wang Yue ◽  
Wang Yin

Abstract Constructed wetlands (CWs) are effective as an advanced treatment process for the treated effluent of municipal wastewater plants. An appropriate substrate, suitable macrophytes, and proper operation are crucial for pollutant abatement. In this research, three subsurface flow CWs with various substrates were investigated. Pollutants abatement efficiency under various operational schemes were analyzed. The results showed that the satisfactory hydraulic loading rate was 0.25 m3/(m2·d). When the C/N ratio of influent was adjusted to 5.87 by adding a carbon source, the denitrification and dephosphorization efficiency would be improved, with 7–8 mg/L for total nitrogen (TN) and 0.4 mg/L for total phosphorus (TP) in the effluent, which can achieve the Class 1A Discharge Standard for discharge to natural waterways in China. A greater depth of submersion for the substrate layer resulted in a more conducive environment for the abatement of nitrogen substances. However, a 40-cm depth of submersion in CWs results in better removal efficiency of TN and TP. A plastic ring substrate (PRS) contains biological enzyme promoter formula, which was conducive to nitrifying and denitrifying bacteria. The biofilm affinity and coordination with plants made the PRS more effective than the other two substrates, especially for NO3–-N and TN abatement efficiency.


1989 ◽  
Vol 21 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Fatma A. El-Gohary ◽  
Sohair I. Abo-Elela ◽  
H. M. El-Kamah

The feasibility of applying direct advanced treatment to municipal wastewater has been investigated. A. two-stage scheme was implemented. The first stage was direct chemical coagulation of primary effluent using different coagulants to remove suspended solids and reduce the carbon to nitrogen ratio to a range suitable for nitrification. The second stage was biological sand-bed to oxidize ammonia to nitrate. The pilot plant was designed to treat 6m3/day. The results obtained showed that chemical coagulation using ferric chloride gave high quality effluent suitable for agricultural purposes. Nitrification of the 2 chemically treated effluent using sand-bed at an overflow rate of 1.358 m3/m2/d completely eliminated ammonia. Almost complete removal of suspended solids was achieved. Residual COD and BOD values were 45 mg/l and 15,5 mg/l, respectively. Fish biotoxicity was completely eliminated after nitrification process.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (3) ◽  
pp. 14-20 ◽  
Author(s):  
YUAN-SHING PERNG ◽  
EUGENE I-CHEN WANG ◽  
SHIH-TSUNG YU ◽  
AN-YI CHANG

Trends toward closure of white water recirculation loops in papermaking often lead to a need for system modifications. We conducted a pilot-scale study using pulsed electrocoagulation technology to treat the effluent of an old corrugated containerboard (OCC)-based paper mill in order to evaluate its treatment performance. The operating variables were a current density of 0–240 A/m2, a hydraulic retention time (HRT) of 8–16 min, and a coagulant (anionic polyacrylamide) dosage of 0–22 mg/L. Water quality indicators investigated were electrical con-ductivity, suspended solids (SS), chemical oxygen demand (COD), and true color. The results were encouraging. Under the operating conditions without coagulant addition, the highest removals for conductivity, SS, COD, and true color were 39.8%, 85.7%, 70.5%, and 97.1%, respectively (with an HRT of 16 min). The use of a coagulant enhanced the removal of both conductivity and COD. With an optimal dosage of 20 mg/L and a shortened HRT of 10 min, the highest removal achieved for the four water quality indicators were 37.7%, 88.7%, 74.2%, and 91.7%, respectively. The water qualities thus attained should be adequate to allow reuse of a substantial portion of the treated effluent as process water makeup in papermaking.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Nusa Idaman Said ◽  
Ikbal Ikbal ◽  
Satmoko Yudo

Sejalan dengan pertumbuhan penduduk yang sangat pesat dan meningkatnya pencemaran air tanah maupun air permukaan, serta distribusi sumber air untuk konsumsi pemakaian air yang tidak merata telah menyebabkan ketidak-seimbangan antara  pasokan dan kebutuhan akan air. Oleh karena itu, menjadi perhatian yang penting dalam melakukan upaya-upaya dalam hal penyediaan sumber air. Salah satu alternatif yang banyak mendapat perhatian di banyak negara di dunia adalah menggunakan teknologi daur ulang air limbah sebagai sumber air baku untuk penyediaan air bersih. Industri migas merupakan salah satu industri yang mempunyai kebutuhan akan air bersih yang besar, khususnya kilang minyak. Pemakaian air di kilang minyak tersebut cukup besar yaitu sebesar 1.400 m3 perjam, apabila air hasil buangannya dapat di daur ulang sebesar 10% atau lebih saja maka kebutuhan air bersih akan dapat dihemat. Tujuan dari kegiatan ini adalah melakukan desain instalasi daur ulang air di suatu kilang minyak. Konsep yang umum dari daur ulang adalah melakukan pengolahan air limbah untuk dijadikan air bersih, dengan menggunakan kombinasi proses pra-pengolahan (preliminary treatment), pengolahan primer (primary treatment), pengolahan primer lanjutan (advanced primary treatment), pengolahan sekunder (secondary treatment), dan pengolahan tersier (tertiary/advanced treatment). Dengan kombinasi proses tersebut dapat mengolah air limbah sampai menghasilkan air olahan dengan kualitas sebagai air minum.  Hasil dari kegiatan ini adalah diperolehnya desain pilot plant instalasi daur ulang air limbah di industri migas dengan kapasitas  9 m3/jam. Kata kunci: pencemaran air, air limbah, desain daur ulang air, kilang minyak


Sign in / Sign up

Export Citation Format

Share Document