scholarly journals Predicting Search Performance in Heterogeneous Scenes: Quantifying the Impact of Homogeneity Effects in Efficient Search

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Alejandro Lleras ◽  
Zhiyuan Wang ◽  
Anna Madison ◽  
Simona Buetti

Recently, Wang, Buetti and Lleras (2017) developed an equation to predict search performance in heterogeneous visual search scenes (i.e., multiple types of non-target objects simultaneously present) based on parameters observed when participants perform search in homogeneous scenes (i.e., when all non-target objects are identical to one another). The equation was based on a computational model where every item in the display is processed with unlimited capacity and independently of one another, with the goal of determining whether the item is likely to be a target or not. The model was tested in two experiments using real-world objects. Here, we extend those findings by testing the predictive power of the equation to simpler objects. Further, we compare the model’s performance under two stimulus arrangements: spatially-intermixed (items randomly placed around the scene) and spatially-segregated displays (identical items presented near each other). This comparison allowed us to isolate and quantify the facilitatory effect of processing displays that contain identical items (homogeneity facilitation), a factor that improves performance in visual search above-and-beyond target-distractor dissimilarity. The results suggest that homogeneity facilitation effects in search arise from local item-to-item interaction (rather than by rejecting items as “groups”) and that the strength of those interactions might be determined by stimulus complexity (with simpler stimuli producing stronger interactions and thus, stronger homogeneity facilitation effects).

Author(s):  
Gwendolyn Rehrig ◽  
Reese A. Cullimore ◽  
John M. Henderson ◽  
Fernanda Ferreira

Abstract According to the Gricean Maxim of Quantity, speakers provide the amount of information listeners require to correctly interpret an utterance, and no more (Grice in Logic and conversation, 1975). However, speakers do tend to violate the Maxim of Quantity often, especially when the redundant information improves reference precision (Degen et al. in Psychol Rev 127(4):591–621, 2020). Redundant (non-contrastive) information may facilitate real-world search if it narrows the spatial scope under consideration, or improves target template specificity. The current study investigated whether non-contrastive modifiers that improve reference precision facilitate visual search in real-world scenes. In two visual search experiments, we compared search performance when perceptually relevant, but non-contrastive modifiers were included in the search instruction. Participants (NExp. 1 = 48, NExp. 2 = 48) searched for a unique target object following a search instruction that contained either no modifier, a location modifier (Experiment 1: on the top left, Experiment 2: on the shelf), or a color modifier (the black lamp). In Experiment 1 only, the target was located faster when the verbal instruction included either modifier, and there was an overall benefit of color modifiers in a combined analysis for scenes and conditions common to both experiments. The results suggest that violations of the Maxim of Quantity can facilitate search when the violations include task-relevant information that either augments the target template or constrains the search space, and when at least one modifier provides a highly reliable cue. Consistent with Degen et al. (2020), we conclude that listeners benefit from non-contrastive information that improves reference precision, and engage in rational reference comprehension. Significance statement This study investigated whether providing more information than someone needs to find an object in a photograph helps them to find that object more easily, even though it means they need to interpret a more complicated sentence. Before searching a scene, participants were either given information about where the object would be located in the scene, what color the object was, or were only told what object to search for. The results showed that providing additional information helped participants locate an object in an image more easily only when at least one piece of information communicated what part of the scene the object was in, which suggests that more information can be beneficial as long as that information is specific and helps the recipient achieve a goal. We conclude that people will pay attention to redundant information when it supports their task. In practice, our results suggest that instructions in other contexts (e.g., real-world navigation, using a smartphone app, prescription instructions, etc.) can benefit from the inclusion of what appears to be redundant information.


Author(s):  
P. Manivannan ◽  
Sara Czaja ◽  
Colin Drury ◽  
Chi Ming Ip

Visual search is an important component of many real world tasks such as industrial inspection and driving. Several studies have shown that age has an impact on visual search performance. In general older people demonstrate poorer performance on such tasks as compared to younger people. However, there is controversy regarding the source of the age-performance effect. The objective of this study was to examine the relationship between component abilities and visual search performance, in order to identify the locus of age-related performance differences. Six abilities including reaction time, working memory, selective attention and spatial localization were identified as important components of visual search performance. Thirty-two subjects ranging in age from 18 - 84 years, categorized in three different age groups (young, middle, and older) participated in the study. Their component abilities were measured and they performed a visual search task. The visual search task varied in complexity in terms of type of targets detected. Significant relationships were found between some of the component skills and search performance. Significant age effects were also observed. A model was developed using hierarchical multiple linear regression to explain the variance in search performance. Results indicated that reaction time, selective attention, and age were important predictors of search performance with reaction time and selective attention accounting for most of the variance.


Author(s):  
Samia Hussein

The present study examined the effect of scene context on guidance of attention during visual search in real‐world scenes. Prior research has demonstrated that when searching for an object, attention is usually guided to the region of a scene that most likely contains that target object. This study examined two possible mechanisms of attention that underlie efficient search: enhancement of attention (facilitation) and a deficiency of attention (inhibition). In this study, participants (N=20) were shown an object name and then required to search through scenes for the target while their eye movements were tracked. Scenes were divided into target‐relevant contextual regions (upper, middle, lower) and participants searched repeatedly in the same scene for different targets either in the same region or in different regions. Comparing repeated searches within the same scene across different regions, we expect to find that visual search is faster and more efficient (facilitation of attention) in regions of a scene where attention was previously deployed. At the same time, when searching across different regions, we expect searches to be slower and less efficient (inhibition of attention) because those regions were previously ignored. Results from this study help to better understand how mechanisms of visual attention operate within scene contexts during visual search. 


Author(s):  
Karl F. Van Orden ◽  
Joseph DiVita

Previous research has demonstrated that search times are reduced when flicker is used to highlight color coded symbols, but that flicker is not distracting when subjects must search for non-highlighted symbols. This prompted an examination of flicker and other stimulus dimensions in a conjunctive search paradigm. In all experiments, at least 15 subjects completed a minimum of 330 trials in which they indicated the presence or absence of target stimuli on a CRT display that contained either 8, 16 or 32 items. In Experiment 1, subjects searched for blue-steady or red-flickering (5.6 Hz) circular targets among blue-flickering and red-steady distractors. Blue-steady targets produced a more efficient search rate (11.6 msec/item) than red-flickering targets (19.3 msec/item). In Experiment 2, a conjunction of flicker and size (large and small filled circles) yielded the opposite results; the search performance for large-flickering targets was unequivocally parallel. In Experiment 3, conjunctions of form and flicker yielded highly serial search performance. The findings are consistent with the response properties of parvo and magnocellular channels of the early visual system, and suggest that search is most efficient when one of these channels can be filtered completely.


2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhiyuan Wang ◽  
Simona Buetti ◽  
Alejandro Lleras

Previous work in our lab has demonstrated that efficient visual search with a fixed target has a reaction time by set size function that is best characterized by logarithmic curves. Further, the steepness of these logarithmic curves is determined by the similarity between target and distractor items (Buetti et al., 2016). A theoretical account of these findings was proposed, namely that a parallel, unlimited capacity, exhaustive processing architecture is underlying such data. Here, we conducted two experiments to expand these findings to a set of real-world stimuli, in both homogeneous and heterogeneous search displays. We used computational simulations of this architecture to identify a way to predict RT performance in heterogeneous search using parameters estimated from homogeneous search data. Further, by examining the systematic deviation from our predictions in the observed data, we found evidence that early visual processing for individual items is not independent. Instead, items in homogeneous displays seemed to facilitate each other’s processing by a multiplicative factor. These results challenge previous accounts of heterogeneity effects in visual search, and demonstrate the explanatory and predictive power of an approach that combines computational simulations and behavioral data to better understand performance in visual search.


2019 ◽  
Author(s):  
Bria Long ◽  
Mariko Moher ◽  
Susan Carey ◽  
Talia Konkle

By adulthood, animacy and object size jointly structure neural responses in visual cortex and influence perceptual similarity computations. Here, we take a first step in asking about the development of these aspects of cognitive architecture by probing whether animacy and object size are reflected in perceptual similarity computations by the preschool years. We used visual search performance as an index of perceptual similarity, as research with adults suggests search is slower when distractors are perceptually similar to the target. Preschoolers found target pictures more quickly when targets differed from distractor pictures in either animacy (Experiment 1) or in real-world size (Experiment 2; the pictures themselves were all the same size), versus when they do not. Taken together, these results suggest that the visual system has abstracted perceptual features for animates vs. inanimates and big vs. small objects as classes by the preschool years and call for further research exploring the development of these perceptual representations and their consequences for neural organization in childhood.


2021 ◽  
Author(s):  
Thomas L. Botch ◽  
Brenda D. Garcia ◽  
Yeo Bi Choi ◽  
Caroline E. Robertson

Visual search is a universal human activity in naturalistic environments. Traditionally, visual search is investigated under tightly controlled conditions, where head-restricted participants locate a minimalistic target in a cluttered array presented on a computer screen. Do classic findings of visual search extend to naturalistic settings, where participants actively explore complex, real-world scenes? Here, we leverage advances in virtual reality (VR) technology to relate individual differences in classic visual search paradigms to naturalistic search behavior. In a naturalistic visual search task, participants looked for an object within their environment via a combination of head-turns and eye-movements using a head-mounted display. Then, in a classic visual search task, participants searched for a target within a simple array of colored letters using only eye-movements. We tested how set size, a property known to limit visual search within computer displays, predicts the efficiency of search behavior inside immersive, real-world scenes that vary in levels of visual clutter. We found that participants' search performance was impacted by the level of visual clutter within real-world scenes. Critically, we also observed that individual differences in visual search efficiency in classic search predicted efficiency in real-world search, but only when the comparison was limited to the forward-facing field of view for real-world search. These results demonstrate that set size is a reliable predictor of individual performance across computer-based and active, real-world visual search behavior.


Author(s):  
Christiane Lange-Küttner ◽  
Andrei-Alexandru Puiu

Abstract. The impact of sex-specific personality traits has often been investigated for visuospatial tasks such as mental rotation, but less is known about the influence of personality traits on visual search. We investigated whether the Big Five personality traits Extroversion (E), Openness (O), Agreeableness (A), Conscientiousness (C), and Neuroticism (N) and the Autism Quotient (AQ) influence visual search in a sample of N = 65 men and women. In three experiments, we varied stimulus complexity and predictability. As expected, latencies were longer when the target was absent. Pop-out search was faster than conjunction search. A large number of distracters slowed down reaction times (RTs). When stimulus complexity was not predictable in Experiment 3, this reduced search accuracy by about half. As could be predicted based on previous research on long RT tails, conjunction search in target absent trials revealed the impact of personality traits. The RT effect in visual search of the accelerating “less social” AQ score was specific to men, while the effects of the “more social” decelerating Big Five Inventory factors agreeableness and conscientiousness were specific to women. Thus, sex-specific personality traits could explain decision-making thresholds, while visual stimulus complexity yielded an impact of the classic personality traits neuroticism and extroversion.


Sign in / Sign up

Export Citation Format

Share Document