scholarly journals A practical algorithm for the retrieval of floe size distribution of Arctic sea ice from high-resolution satellite Synthetic Aperture Radar imagery

Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Byongjun Hwang ◽  
Jinchang Ren ◽  
Samuel McCormack ◽  
Craig Berry ◽  
Ismail Ben Ayed ◽  
...  

In this study, we present an algorithm for summer sea ice conditions that semi-automatically produces the floe size distribution of Arctic sea ice from high-resolution satellite Synthetic Aperture Radar data. Currently, floe size distribution data from satellite images are very rare in the literature, mainly due to the lack of a reliable algorithm to produce such data. Here, we developed the algorithm by combining various image analysis methods, including Kernel Graph Cuts, distance transformation and watershed transformation, and a rule-based boundary revalidation. The developed algorithm has been validated against the ground truth that was extracted manually with the aid of 1-m resolution visible satellite data. Comprehensive validation analysis has shown both perspectives and limitations. The algorithm tends to fail to detect small floes (mostly less than 100 m in mean caliper diameter) compared to ground truth, which is mainly due to limitations in water-ice segmentation. Some variability in the power law exponent of floe size distribution is observed due to the effects of control parameters in the process of de-noising, Kernel Graph Cuts segmentation, thresholds for boundary revalidation and image resolution. Nonetheless, the algorithm, for floes larger than 100 m, has shown a reasonable agreement with ground truth under various selections of these control parameters. Considering that the coverage and spatial resolution of satellite Synthetic Aperture Radar data have increased significantly in recent years, the developed algorithm opens a new possibility to produce large volumes of floe size distribution data, which is essential for improving our understanding and prediction of the Arctic sea ice cover.

1994 ◽  
Vol 99 (C11) ◽  
pp. 22425 ◽  
Author(s):  
D. P. Winebrenner ◽  
E. D. Nelson ◽  
R. Colony ◽  
R. D. West

2021 ◽  
Vol 13 (9) ◽  
pp. 1753
Author(s):  
Johnson Bailey ◽  
Armando Marino ◽  
Vahid Akbari

Icebergs represent hazards to ships and maritime activities and therefore their detection is essential. Synthetic Aperture Radar (SAR) satellites are very useful for this, due to their capability to acquire data under cloud cover and during day and night passes. In this work, we compared six state-of-the-art polarimetric target detectors to test their performance and ability to detect small-sized icebergs <120 m in four locations in Greenland. We used four single-look complex (SLC) ALOS-2 quad-polarimetric images from JAXA for quad-polarimetric detection and we compared with dual-polarimetric detectors using only the channels HH and HV. We also compared these detectors with single-polarimetric intensity channels and we tested using two scenarios: open ocean and sea ice. Our results show that the multi-look polarimetric whitening filter (MPWF) and the optimal polarimetric detector (OPD) provide the most optimal performance in quad- and dual-polarimetric mode detection. The analysis shows that, overall, quad-polarimetric detectors provide the best detection performance. When the false alarm rate (PF) is fixed to 10-5, the probabilities of detection (PD) are 0.99 in open ocean and 0.90 in sea ice. Dual-polarimetric or single-polarimetric detectors show an overall reduction in performance (the ROC curves show a decrease), but this degradation is not very large (<0.1) when the value of false alarms is relatively high (i.e., we are interested in bigger icebergs with a brighter backscattering >120 m, as they are easier to detect). However, the differences between quad- and dual- or single-polarimetric detectors became much more evident when the PF value was fixed to low detection probabilities 10-6 (i.e., smaller icebergs). In the single-polarimetric mode, the HV channel showed PD values of 0.62 for open ocean and 0.26 for sea ice, compared to values of 0.81 (open ocean) and 0.77 (sea ice) obtained with quad-polarimetric detectors.


2020 ◽  
Vol 61 (82) ◽  
pp. 40-50 ◽  
Author(s):  
A. Malin Johansson ◽  
Eirik Malnes ◽  
Sebastian Gerland ◽  
Anca Cristea ◽  
Anthony P. Doulgeris ◽  
...  

AbstractSynthetic Aperture Radar (SAR) satellite images are used to monitor Arctic sea ice, with systematic data records dating back to 1991. We propose a semi-supervised classification method that separates open water from sea ice and can utilise ERS-1/2, Envisat ASAR, RADARSAT-2 and Sentinel-1 SAR images. The classification combines automatic segmentation with a manual segment selection stage. The segmentation algorithm requires only the backscatter intensities and incidence angle values as input, therefore can be used to establish a consistent decadal sea ice record. In this study we investigate the sea ice conditions in two Svalbard fjords, Kongsfjorden and Rijpfjorden. Both fjords have a seasonal ice cover, though Rijpfjorden has a longer sea ice season. The satellite image dataset has weekly to daily records from 2002 until now, and less frequent records between 1991 and 2002. Time overlap between different sensors is investigated to ensure consistency in the reported sea ice cover. The classification results have been compared to high-resolution SAR data as well as in-situ measurements and sea ice maps from Ny-Ålesund. For both fjords the length of the sea ice season has shortened since 2002 and for Kongsfjorden the maximum sea ice coverage is significantly lower after 2006.


Author(s):  
N. Milisavljevic ◽  
D. Closson ◽  
F. Holecz ◽  
F. Collivignarelli ◽  
P. Pasquali

Land-cover changes occur naturally in a progressive and gradual way, but they may happen rapidly and abruptly sometimes. Very high resolution remote sensed data acquired at different time intervals can help in analyzing the rate of changes and the causal factors. In this paper, we present an approach for detecting changes related to disasters such as an earthquake and for mapping of the impact zones. The approach is based on the pieces of information coming from SAR (Synthetic Aperture Radar) and on their combination. The case study is the 22 February 2011 Christchurch earthquake. <br><br> The identification of damaged or destroyed buildings using SAR data is a challenging task. The approach proposed here consists in finding amplitude changes as well as coherence changes before and after the earthquake and then combining these changes in order to obtain richer and more robust information on the origin of various types of changes possibly induced by an earthquake. This approach does not need any specific knowledge source about the terrain, but if such sources are present, they can be easily integrated in the method as more specific descriptions of the possible classes. <br><br> A special task in our approach is to develop a scheme that translates the obtained combinations of changes into ground information. Several algorithms are developed and validated using optical remote sensing images of the city two days after the earthquake, as well as our own ground-truth data. The obtained validation results show that the proposed approach is promising.


2021 ◽  
Author(s):  
Malin Johansson ◽  
Suman Singha ◽  
Gunnar Spreen ◽  
Stephen Howell ◽  
Shin-ichi Sobue ◽  
...  

&lt;p&gt;In the yearlong MOSAIC expedition (2019-2020) R/V Polarstern drifted with sea ice through the Arctic Ocean, with the goal to continually monitor changes in the coupled ocean-ice-atmosphere system throughout the seasons. A substantial amount of synthetic aperture radar (SAR) satellite images overlapping the campaign was collected. Here, we investigate the change in polarimetric features over sea ice from the freeze up to the advanced melt season using fully polarimetric L-band images from the ALOS-2 PALSAR-2 and fully polarimetric C-band images from the RADARSAT-2 satellite SAR sensors.&lt;/p&gt;&lt;p&gt;Three different sea ice types are investigated, young ice, level first year ice and deformed first and second-year ice. Areas of deformed and level sea ice were observed in the vicinity of R/V Polarstern and these areas are included whenever possible in the yearlong time series.&lt;/p&gt;&lt;p&gt;Comparing the different sea ice types, we observe that during the freezing season there is a larger difference in the co-polarization channels between smooth and deformed ice in L-band compared to C-band. Similar to earlier findings we observe larger differences between young ice and deformed ice backscatter values in the L-band data compared to the C-band data. Moreover, throughout the year the HV-backscatter values show larger differences between level and deformed sea ice in L-band than C-band. The L-band data variability is significantly smaller for the level sea ice compared to the deformed sea ice, and this variability was also smaller than that observed for the overlapping C-band data. Thus L-band data could be more suitable to reliable separate deformed from level sea ice areas.&amp;#160; &amp;#160;&lt;/p&gt;&lt;p&gt;Within the L-band images a noticeable shift towards higher backscatter values in early melt season compared to the freezing season for all polarimetric channels is observed, though no such strong trend is found in the C-band data. The change in backscatter values is first noticeable in the C-band images and later followed by a change in the L-band images, probably caused by their different penetration depth and volume scattering sensitivities. This change also results in a smaller backscatter variability.&lt;/p&gt;&lt;p&gt;The polarization difference (PD; VV-HH on a linear scale) show a seasonal dependency for the smooth and deformed sea ice within the L-band data, whereas for the C-band data no such trend is observed. For the L-band data were the PD variability for all ice classes reasonably small for the freezing season, with a significant shift towards larger variability during the early melt season, though during this time period the mean PD values remained similar. However, once the temperatures reached above 0&amp;#176;C both the variability and the mean values increased significantly.&lt;/p&gt;&lt;p&gt;Overall, our results demonstrate that the C- and L-band data are complementary to one another and that through their slightly different dependencies on season and sea ice types, a combination of the two frequencies can aid improved sea ice classification. The availability of a high spatial and temporal resolution dataset combined with in-situ information ensures that seasonal changes can be fully explored.&lt;/p&gt;


2013 ◽  
Vol 7 (4) ◽  
pp. 1315-1324 ◽  
Author(s):  
M. Zygmuntowska ◽  
K. Khvorostovsky ◽  
V. Helm ◽  
S. Sandven

Abstract. Sea ice thickness is one of the most sensitive variables in the Arctic climate system. In order to quantify changes in sea ice thickness, CryoSat-2 was launched in 2010 carrying a Ku-band radar altimeter (SIRAL) designed to measure sea ice freeboard with a few centimeters accuracy. The instrument uses the synthetic aperture radar technique providing signals with a resolution of about 300 m along track. In this study, airborne Ku-band radar altimeter data over different sea ice types have been analyzed. A set of parameters has been defined to characterize the differences in strength and width of the returned power waveforms. With a Bayesian-based method, it is possible to classify about 80% of the waveforms from three parameters: maximum of the returned power waveform, the trailing edge width and pulse peakiness. Furthermore, the maximum of the power waveform can be used to reduce the number of false detections of leads, compared to the widely used pulse peakiness parameter. For the pulse peakiness the false classification rate is 12.6% while for the power maximum it is reduced to 6.5%. The ability to distinguish between different ice types and leads allows us to improve the freeboard retrieval and the conversion from freeboard into sea ice thickness, where surface type dependent values for the sea ice density and snow load can be used.


Sign in / Sign up

Export Citation Format

Share Document