Golgi maturation‐dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3

2021 ◽  
Author(s):  
Riccardo Rizzo ◽  
Domenico Russo ◽  
Kazuo Kurokawa ◽  
Pranoy Sahu ◽  
Bernadette Lombardi ◽  
...  
2020 ◽  
Author(s):  
Prathyush Pothukuchi ◽  
Ilenia Agliarulo ◽  
Marinella Pirozzi ◽  
Riccardo Rizzo ◽  
Domenico Russo ◽  
...  

AbstractGlycans are important regulators of cell and organismal physiology. This requires that the glycan biosynthesis be controlled to achieve specific cellular glycan profiles. Glycans are assembled in the Golgi apparatus on secretory cargoes that traverse it. The mechanisms by which the Golgi apparatus ensures cell- and cargo-specific glycosylation remain obscure. We investigated how the Golgi apparatus regulates glycosylation by studying biosynthesis of glycosphingolipids, glycosylated lipids with critical roles in signalling and differentiation. We identified the Golgi matrix protein GRASP55 as a controller of sphingolipid glycosylation by regulating the compartmentalized localization of key sphingolipid biosynthetic enzymes in the Golgi. GRASP55 controls the localization of the enzymes by binding to them and regulating their entry into peri-Golgi vesicles. Impairing GRASP55-enzyme interaction decompartmentalizes these enzymes, changes the substrate flux across competing glycosylation pathways that results in alteration of the cellular glycosphingolipid profile. This GRASP55 regulated pathway of enzyme compartmentalization allows cells to make cell density-dependent adaptations in glycosphingolipid biosynthesis to suit cell growth needs. Thus, the Golgi apparatus controls the cellular glycan (glycosphingolipid) profile by governing competition between biosynthetic reactions through regulated changes in enzyme compartmentalization.


Author(s):  
V. F. Allison ◽  
G. C. Fink ◽  
G. W. Cearley

It is well known that epithelial hyperplasia (benign hypertrophy) is common in the aging prostate of dogs and man. In contrast, little evidence is available for abnormal epithelial cell growth in seminal vesicles of aging animals. Recently, enlarged seminal vesicles were reported in senescent mice, however, that enlargement resulted from increased storage of secretion in the lumen and occurred concomitant to epithelial hypoplasia in that species.The present study is concerned with electron microscopic observations of changes occurring in the pseudostratified epithelium of the seminal vescles of aging rats. Special attention is given to certain non-epithelial cells which have entered the epithelial layer.


Author(s):  
Dean A. Handley ◽  
Jack T. Alexander ◽  
Shu Chien

In situ preparation of cell cultures for ultrastructural investigations is a convenient method by which fixation, dehydration and embedment are carried out in the culture petri dish. The in situ method offers the advantage of preserving the native orientation of cell-cell interactions, junctional regions and overlapping configurations. In order to section after embedment, the petri dish is usually separated from the polymerized resin by either differential cryo-contraction or solvation in organic fluids. The remaining resin block must be re-embedded before sectioning. Although removal of the petri dish may not disrupt the native cellular geometry, it does sacrifice what is now recognized as an important characteristic of cell growth: cell-substratum molecular interactions. To preserve the topographic cell-substratum relationship, we developed a simple method of tapered rotary beveling to reduce the petri dish thickness to a dimension suitable for direct thin sectioning.


2006 ◽  
Vol 175 (4S) ◽  
pp. 135-135
Author(s):  
George N. Thalmann ◽  
H. Rhee Atlanta ◽  
R.A. Sikes ◽  
S. Pathak ◽  
Haiyen E. Zhau ◽  
...  

2006 ◽  
Vol 175 (4S) ◽  
pp. 257-257
Author(s):  
Jennifer Sung ◽  
Qinghua Xia ◽  
Wasim Chowdhury ◽  
Shabana Shabbeer ◽  
Michael Carducci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document