scholarly journals A Contribution to the Modelling of Fouling Resistance in Heat Exchanger-Condenser by Direct and Inverse Artificial Neural Network

2021 ◽  
Author(s):  
Ahmed Benyekhlef ◽  
Brahim Mohammedi ◽  
Salah Hanini ◽  
Mouloud Boumahdi ◽  
Ahmed Rezrazi ◽  
...  
Author(s):  
Ahmed Benyekhlef ◽  
Brahim Mohammedi ◽  
Djamel Hassani ◽  
Salah Hanini

Abstract In this work an artificial neural network model was developed with the aim of predicting fouling resistance for heat exchanger, the network was designed and trained by means of 375 experimental data points that were selected from the literature. This data points contains 6 inputs, including time, volumetric concentration, heat flux, mass flow rate, inlet temperature, thermal conductivity and fouling resistance as an output. The experimental data are used for training, testing and validation the ANN using multiple layer perceptron (MLP). The comparison of statistical criteria of different networks shows that the optimal structure for predicting the fouling resistance of the nanofluid is the MLP network with 20 hidden neurons, which has been trained with Levenberg–Marquardt (LM) algorithm. The accuracy of the model was assessed based on three known statistical metrics including mean square error (MSE), mean absolute percentage error (MAPE) and coefficient of determination (R2). The obtained model was found with the performance of {MSE = 6.5377 × 10−4, MAPE = 2.40% and R2 = 0.99756} for the training stage, {MSE = 3.9629 × 10−4, MAPE = 1.8922% and R2 = 0.99835} for the test stage and {MSE = 5.8303 × 10−4, MAPE = 2.57% and R2 = 0.99812} for the validation stage. In order to control the fouling procedure, and after conducting a sensitivity analysis, it found that all input variables have strong effect on the estimation of the fouling resistance.


2020 ◽  
Vol 10 (16) ◽  
pp. 5659 ◽  
Author(s):  
Bin Li ◽  
Chengjie Li ◽  
Junying Huang ◽  
Changyou Li

Uncontrollable ambient conditions are the main factors limiting the self-adaption control of an industrial drying system. To achieve the goal of accurate control of the drying process, the influence of the ambient conditions on the drying behavior should be taken into consideration when modeling the drying process. Present work introduced an industrial drying system with a loading capacity of 50 t, two artificial neural network prediction models with (IANN) and without (OANN) considering the ambient conditions were established using artificial neural network modeling approach. The ambient conditions on the moisture content (MC), exergy efficiency of the heat exchanger (ηex,h) and specific recovered radiant energy (Er) of the drying process were also investigated. The results showed that the ηex,h and Er increase with the increase of ambient temperature while the drying time decrease with the increase of the ambient temperature. The IANN model has a better prediction performance that that of OANN model. An optimal architecture of 9-2-12-3 artificial neuron network model was developed and the best prediction performance of the artificial neural network (ANN) model were found at a training epoch number of 30, and a momentum coefficient of 0.4, where the coefficient of determination of moisture content, exergy efficiency of heat exchanger, and the specific recovered radiant energy, respectively are 0.998, 0.992, and 0.980, indicating that the model has an excellent prediction performance and can be used in engineering practice.


Sign in / Sign up

Export Citation Format

Share Document