scholarly journals EXPLOITING F LONE PAIR···πAROMATIC-HOLE INTERACTION BETWEEN BENZALDEHYDE AND TETRAFLUOROMETHANE

2021 ◽  
Author(s):  
Hao Wang ◽  
Qian Gou ◽  
Junha Chen
Keyword(s):  
2021 ◽  
Vol 23 (15) ◽  
pp. 9121-9129
Author(s):  
Weixing Li ◽  
Imanol Usabiaga ◽  
Camilla Calabrese ◽  
Luca Evangelisti ◽  
Assimo Maris ◽  
...  
Keyword(s):  

Stronger and more flexible lone pair⋯π–hole interaction of ammonia with respect to water in complexes with perfluorinated arenes.


2016 ◽  
Vol 7 (8) ◽  
pp. 1513-1517 ◽  
Author(s):  
Camilla Calabrese ◽  
Qian Gou ◽  
Assimo Maris ◽  
Walther Caminati ◽  
Sonia Melandri

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7231
Author(s):  
Xiulin An ◽  
Xin Yang ◽  
Qingzhong Li

Ab initio calculations have been performed for the complexes of DMSO and phenyltrifluorosilane (PTS) and its derivatives with a substituent of NH3, OCH3, CH3, OH, F, CHO, CN, NO2, and SO3H. It is necessary to use sufficiently flexible basis sets, such as aug’-cc-pVTZ, to get reliable results for the Si···O tetrel bonds. The tetrel bond in these complexes has been characterized in views of geometries, interaction energies, orbital interactions and topological parameters. The electron-donating group in PTS weakens this interaction and the electron-withdrawing group prominently strengthens it to the point where it exceeds that of the majority of hydrogen bonds. The largest interaction energy occurs in the p-HO3S-PhSiF3···DMSO complex, amounting to −122 kJ/mol. The strong Si···O tetrel bond depends to a large extent on the charge transfer from the O lone pair into the empty p orbital of Si, although it has a dominant electrostatic character. For the PTS derivatives of NH2, OH, CHO and NO2, the hydrogen bonded complex is favorable to the tetrel bonded complex for the NH2 and OH derivatives, while the σ-hole interaction prefers the π-hole interaction for the CHO and NO2 derivatives.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 556 ◽  
Author(s):  
Seth Yannacone ◽  
Marek Freindorf ◽  
Yunwen Tao ◽  
Wenli Zou ◽  
Elfi Kraka

11 aryl–lone pair and three aryl–anion π –hole interactions are investigated, along with the argon–benzene dimer and water dimer as reference compounds, utilizing the local vibrational mode theory, originally introduced by Konkoli and Cremer, to quantify the strength of the π –hole interaction in terms of a new local vibrational mode stretching force constant between the two engaged monomers, which can be conveniently used to compare different π –hole systems. Several factors have emerged which influence strength of the π –hole interactions, including aryl substituent effects, the chemical nature of atoms composing the aryl rings/ π –hole acceptors, and secondary bonding interactions between donors/acceptors. Substituent effects indirectly affect the π –hole interaction strength, where electronegative aryl-substituents moderately increase π –hole interaction strength. N-aryl members significantly increase π –hole interaction strength, and anion acceptors bind more strongly with the π –hole compared to charge neutral acceptors (lone–pair donors). Secondary bonding interactions between the acceptor and the atoms in the aryl ring can increase π –hole interaction strength, while hydrogen bonding between the π –hole acceptor/donor can significantly increase or decrease strength of the π –hole interaction depending on the directionality of hydrogen bond donation. Work is in progress expanding this research on aryl π –hole interactions to a large number of systems, including halides, CO, and OCH3− as acceptors, in order to derive a general design protocol for new members of this interesting class of compounds.


2020 ◽  
Author(s):  
Olivier Charles Gagné

The scarcity of nitrogen in Earth’s crust, combined with challenging synthesis, have made inorganic nitrides a relatively-unexplored class of compounds compared to their naturally-abundant oxide counterparts. To facilitate exploration of their compositional space via <i>a priori</i> modeling, and to help <i>a posteriori</i> structure verification not limited to inferring the oxidation state of redox-active cations, we derive a suite of bond-valence parameters and Lewis-acid strength values for 76 cations observed bonding to N<sup>3-</sup>, and further outline a baseline statistical knowledge of bond lengths for these compounds. We examine structural and electronic effects responsible for the functional properties and anomalous bonding behavior of inorganic nitrides, and identify promising venues for exploring uncharted compositional spaces beyond the reach of high-throughput computational methods. We find that many mechanisms of bond-length variation ubiquitous to oxide and oxysalt compounds (e.g., lone-pair stereoactivity, the Jahn-Teller and pseudo Jahn-Teller effects) are similarly pervasive in inorganic nitrides, and are occasionally observed to result in greater distortion magnitude than their oxide counterparts. We identify inorganic nitrides with multiply-bonded metal ions as a promising venue in heterogeneous catalysis, e.g. in the development of a post-Haber-Bosch process proceeding at milder reaction conditions, thus representing further opportunity in the thriving exploration of the functional properties of this emerging class of materials.<br>


2017 ◽  
Author(s):  
Arpita Yadav ◽  
Dasari L V K Prasad ◽  
Veejendra Yadav

<p>The torquoselectivity, the inward or outward ring opening of 3-substituted cyclobutenes, is conventionally guided by the donor and/or acceptor ability of the substituent (S). It is typically predicted by estimating the respective ring opening transition state (TS) barriers. While there is no known dissent in regard to the outward rotation of electron-rich substituents from the approaches of TS calculations, the inward rotation was predicted for some electron-accepting substituents and outward for others. To address this divergence in predicting the torquoselectivity, we have used reliable orbital descriptors through natural bond orbital theoretical calculations and demonstrated that (a) interactions <i>n</i><i><sub>S</sub></i>→s*<sub>C3C4</sub> for a lone pair containing substituent, s<sub>S</sub>→s*<sub>C3C4</sub> for a s-donor substituent, s<sub>C3C4</sub>→p*<sub>S</sub> for a resonance-accepting substituent and s<sub>C3C4</sub>→s*<sub>S</sub> for a s-acceptor substituent constitute the true electronic controls of torquoselectivity, and (b) reversibility of the ring opening event is an additional important contributor to the observed product distribution.</p>


Author(s):  
Olivier Charles Gagné ◽  
Frank Christopher Hawthorne

Bond-length distributions are examined for thirty-three configurations of the metalloid ions and fifty-six configurations of the post-transition-metal ions bonded to oxygen. Lone-pair stereoactivity is discussed.


Author(s):  
Olivier Charles Gagné ◽  
Frank Christopher Hawthorne

Bond-length distributions are examined for thirty-three configurations of the metalloid ions and fifty-six configurations of the post-transition-metal ions bonded to oxygen. Lone-pair stereoactivity is discussed.


Sign in / Sign up

Export Citation Format

Share Document