scholarly journals THE EFFECT OF THE SADDLE POINT POSITION AND THE OH-BONDING FORCE CONSTANT ON THE TRANSITION FREQUENCIES OF H-BOND OF NAPHTHAZARIN

2021 ◽  
Author(s):  
Fatemeh Afshar Ghahremani ◽  
Sayyed Tayyari ◽  
Mansoureh Zahedi-Tabrizi
Author(s):  
K. Shibazaki ◽  
H. Nozaki

In this study, in order to improve steering stability during turning, we devised an inner and outer wheel driving force control system that is based on the steering angle and steering angular velocity, and verified its effectiveness via running tests. In the driving force control system based on steering angle, the inner wheel driving force is weakened in proportion to the steering angle during a turn, and the difference in driving force is applied to the inner and outer wheels by strengthening the outer wheel driving force. In the driving force control (based on steering angular velocity), the value obtained by multiplying the driving force constant and the steering angular velocity,  that differentiates the driver steering input during turning output as the driving force of the inner and outer wheels. By controlling the driving force of the inner and outer wheels, it reduces the maximum steering angle by 40 deg and it became possible to improve the cornering marginal performance and improve the steering stability at the J-turn. In the pylon slalom it reduces the maximum steering angle by 45 deg and it became possible to improve the responsiveness of the vehicle. Control by steering angle is effective during steady turning, while control by steering angular velocity is effective during sharp turning. The inner and outer wheel driving force control are expected to further improve steering stability.


2020 ◽  
Vol 46 (4) ◽  
pp. 396-406 ◽  
Author(s):  
Giorgio Lombardo ◽  
Annarita Signoriello ◽  
Miguel Simancas-Pallares ◽  
Mauro Marincola ◽  
Pier Francesco Nocini

The purpose of this retrospective study was to determine survival and peri-implant marginal bone loss of short and ultra-short implants placed in the posterior mandible. A total of 98 patients received 201 locking-taper implants between January 2014 and January 2015. Implants were placed with a 2-stage approach and restored with single crowns. Clinical and radiographic examinations were performed at 3-year recall appointments. At that time, the proportion of implant survival by length, and variations of crestal bone levels (mean crestal bone loss and mean apical shift of the “first bone-to-implant contact point” position) were assessed. Significance level was set at 0.05. The total number of implants examined 36 months after loading included: 71 implants, 8.0 mm in length; 82 implants, 6.0 mm in length; and 48 implants, 5.0 mm in length. Five implants failed. The overall proportion of survival was 97.51%, with 98.59% for the 8.0-mm implants, 97.56% for the 6.0-mm implants, and 95.83% for the 5.0-mm implants. No statistically significant differences were found among the groups regarding implant survival (P = .73), mean crestal bone loss (P = .31), or mean apical shift of the “first bone-to-implant contact point” position (P = .36). Single-crown short and ultra-short implants may offer predictable outcomes in the atrophic posterior mandibular regions, though further investigations with longer follow-up evaluations are necessary to validate our results.


2018 ◽  
Author(s):  
Anthony Nash ◽  
Nora H de Leeuw ◽  
Helen L Birch

<div> <div> <div> <p>The computational study of advanced glycation end-product cross- links remains largely unexplored given the limited availability of bonded force constants and equilibrium values for molecular dynamics force fields. In this article, we present the bonded force constants, atomic partial charges and equilibrium values of the arginine-lysine cross-links DOGDIC, GODIC and MODIC. The Hessian was derived from a series of <i>ab initio</i> quantum mechanical electronic structure calculations and from which a complete set of force constant and equilibrium values were generated using our publicly available software, ForceGen. Short <i>in vacuo</i> molecular dynamics simulations were performed to validate their implementation against quantum mechanical frequency calculations. </p> </div> </div> </div>


Filomat ◽  
2017 ◽  
Vol 31 (9) ◽  
pp. 2557-2574 ◽  
Author(s):  
Tadeusz Antczak

Semi-infinite minimax fractional programming problems with both inequality and equality constraints are considered. The sets of parametric saddle point conditions are established for a new class of nonconvex differentiable semi-infinite minimax fractional programming problems under(?,?)-invexity assumptions. With the reference to the said concept of generalized convexity, we extend some results of saddle point criteria for a larger class of nonconvex semi-infinite minimax fractional programming problems in comparison to those ones previously established in the literature.


Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This chapter discusses an approximate approach—transition-state theory—to the calculation of rate constants for bimolecular reactions. A reaction coordinate is identified from a normal-mode coordinate analysis of the activated complex, that is, the supermolecule on the saddle-point of the potential energy surface. Motion along this coordinate is treated by classical mechanics and recrossings of the saddle point from the product to the reactant side are neglected, leading to the result of conventional transition-state theory expressed in terms of relevant partition functions. Various alternative derivations are presented. Corrections that incorporate quantum mechanical tunnelling along the reaction coordinate are described. Tunnelling through an Eckart barrier is discussed and the approximate Wigner tunnelling correction factor is derived in the limit of a small degree of tunnelling. It concludes with applications of transition-state theory to, for example, the F + H2 reaction, and comparisons with results based on quasi-classical mechanics as well as exact quantum mechanics.


2001 ◽  
Vol 15 (28n30) ◽  
pp. 3865-3868 ◽  
Author(s):  
H. MIYAOKA ◽  
T. KUZE ◽  
H. SANO ◽  
H. MORI ◽  
G. MIZUTANI ◽  
...  

We have obtained the Raman spectra of TiCl n (n= 2, 3, and 4). Assignments of the observed Raman bands were made by a normal mode analysis. The force constants were determined from the observed Raman band frequencies. We have found that the Ti-Cl stretching force constant increases as the oxidation number of the Ti species increases.


1998 ◽  
Vol 2 (1-4) ◽  
pp. 523-526
Author(s):  
M.V Budantsev ◽  
Z.D Kvon ◽  
A.G Pogosov ◽  
E.B Olshanetskii ◽  
D.K Maude ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document