scholarly journals CHARACTERISTICS OF K3-VEI4 ENGINE PERFORMANCE USING SWIRL GENERATOR, AIR INTAKE TANK AND EXHAUST GAS RECIRCULATION MODIFICATION

Author(s):  
M.H. Mat ◽  
◽  
N.H. Badrulhisam ◽  
A.Q. Hanafiah ◽  
N.R. Abdullah ◽  
...  
Author(s):  
Mario Santillo ◽  
Suzanne Wait ◽  
Julia Buckland

We investigate control strategies for traditional throttle-in-bore as well as low-cost cartridge-style throttle bodies for the air-intake system (AIS) throttle used in low-pressure exhaust-gas recirculation (LPEGR) on a turbocharged gasoline engine. Pressure sensors placed upstream and downstream of the AIS throttle are available as signals from the vehicle’s engine control unit, however, we do not use high-bandwidth feedback control of the AIS throttle in order to maintain frequency separation from the higher-rate EGR loop, which uses the downstream pressure sensor for feedback control. A design-of-experiments conducted using a feed-forward lookup table-based AIS throttle control strategy exposes controller sensitivity to part-to-part variations. For accurate tracking in the presence of these variations, we explore the use of adaptive feedback control. In particular, we use an algebraic model representing the throttle plate effective opening area to develop a recursive least-squares (RLS)-based estimation routine. A low-pass filtered version of the estimated model parameters is subsequently used in the forward-path AIS throttle controller. Results are presented comparing the RLS-based feedback algorithm with the feed-forward lookup table-based control strategy. RLS is able to adapt for part-to-part and change-over-time variabilities and exhibits an improved steady-state tracking response compared to the feed-forward control strategy.


2017 ◽  
Vol 110 ◽  
pp. 26-31 ◽  
Author(s):  
Mohd Hafizil Mat Yasin ◽  
Rizalman Mamat ◽  
Ahmad Fitri Yusop ◽  
Daing Mohamad Nafiz Daing Idris ◽  
Talal Yusaf ◽  
...  

2004 ◽  
Vol 119 (2) ◽  
pp. 12-22
Author(s):  
Dariusz PIETRAS ◽  
Maciej SOBIESZCZAŃSKI

The article presents results of a spark ignition engine examination, which has been conducted to establish the influence of exhaust gases recirculation on the engine performance and the toxic content in exhaust gases. The research concentrated on identifying a range of recirculation levels, which enabled to eliminate its negative influence on the engine performance by means of selecting an appropriate angle of advance. Further, the article discusses the engine examination procedures involving different recirculation control algorithms in the ECM chip. Finally, the article presents EURO II and EURO III tests, conducted on a vehicle/engine controlled by the above-mentioned software.


2020 ◽  
pp. 146808742093016
Author(s):  
Jianjiao Jin ◽  
Jianfeng Pan ◽  
Zhigang Lu ◽  
Qingrui Wu ◽  
Lizhong Xu

A conventional asymmetric twin-scroll turbine with wastegate is capable of effectively tackling down the contradiction between fuel economy degradation and low nitrogen oxide emissions. However, as the engine speed has been rising at middle- and high-speed ranges, the pressure of small scroll inlet will be increasingly higher as compared with the intake pressure, thereby worsening fuel economy. In this study, a novel turbocharging technology of asymmetric twin-scroll turbine with a balance valve was first analyzed to more effectively balance the engine fuel economy and emission. The experiments on turbine test rig and engine performance were performed to explore the effects of balance valve on turbine performance, asymmetric ratio, exhaust gas recirculation rate, as well as engine performance. As the balance valve open degree was elevated, the turbine flow parameter was being extended, while the turbine efficiency was enhanced. Moreover, a lower asymmetric ratio could lead to a broader flow parameter range between that of partial admission and equal admission, thereby resulting in a broader regulating range of exhaust gas recirculation rate. In contrast with the asymmetric twin-scroll turbine with wastegate, the turbine running efficiency of asymmetric twin-scroll turbine with balance valve was enhanced by nearly 2%–11% at middle and high engine speed ranges, while the fuel economy was improved by nearly 1.5%–8%.


Sign in / Sign up

Export Citation Format

Share Document