Effect of balance valve on an asymmetric twin-scroll turbine for heavy-duty diesel engine

2020 ◽  
pp. 146808742093016
Author(s):  
Jianjiao Jin ◽  
Jianfeng Pan ◽  
Zhigang Lu ◽  
Qingrui Wu ◽  
Lizhong Xu

A conventional asymmetric twin-scroll turbine with wastegate is capable of effectively tackling down the contradiction between fuel economy degradation and low nitrogen oxide emissions. However, as the engine speed has been rising at middle- and high-speed ranges, the pressure of small scroll inlet will be increasingly higher as compared with the intake pressure, thereby worsening fuel economy. In this study, a novel turbocharging technology of asymmetric twin-scroll turbine with a balance valve was first analyzed to more effectively balance the engine fuel economy and emission. The experiments on turbine test rig and engine performance were performed to explore the effects of balance valve on turbine performance, asymmetric ratio, exhaust gas recirculation rate, as well as engine performance. As the balance valve open degree was elevated, the turbine flow parameter was being extended, while the turbine efficiency was enhanced. Moreover, a lower asymmetric ratio could lead to a broader flow parameter range between that of partial admission and equal admission, thereby resulting in a broader regulating range of exhaust gas recirculation rate. In contrast with the asymmetric twin-scroll turbine with wastegate, the turbine running efficiency of asymmetric twin-scroll turbine with balance valve was enhanced by nearly 2%–11% at middle and high engine speed ranges, while the fuel economy was improved by nearly 1.5%–8%.

2020 ◽  
Vol 21 (10) ◽  
pp. 1819-1834
Author(s):  
Bryan P Maldonado ◽  
Nan Li ◽  
Ilya Kolmanovsky ◽  
Anna G Stefanopoulou

Cycle-to-cycle feedback control is employed to achieve optimal combustion phasing while maintaining high levels of exhaust gas recirculation by adjusting the spark advance and the exhaust gas recirculation valve position. The control development is based on a control-oriented model that captures the effects of throttle position, exhaust gas recirculation valve position, and spark timing on the combustion phasing. Under the assumption that in-cylinder pressure information is available, an adaptive extended Kalman filter approach is used to estimate the exhaust gas recirculation rate into the intake manifold based on combustion phasing measurements. The estimation algorithm is adaptive since the cycle-to-cycle combustion variability (output covariance) is not known a priori and changes with operating conditions. A linear quadratic regulator controller is designed to maintain optimal combustion phasing while maximizing exhaust gas recirculation levels during load transients coming from throttle tip-in and tip-out commands from the driver. During throttle tip-outs, however, a combination of a high exhaust gas recirculation rate and an overly advanced spark, product of the dynamic response of the system, generates a sequence of misfire events. In this work, an explicit reference governor is used as an add-on scheme to the closed-loop system in order to avoid the violation of the misfire limit. The reference governor is enhanced with model-free learning which enables it to avoid misfires after a learning phase. Experimental results are reported which illustrate the potential of the proposed control strategy for achieving an optimal combustion process during highly diluted conditions for improving fuel efficiency.


2019 ◽  
Vol 22 (1) ◽  
pp. 284-294 ◽  
Author(s):  
FCP Leach ◽  
MH Davy ◽  
MS Peckham

As the control of real driving emissions continues to increase in importance, the importance of understanding emission formation mechanisms during engine transients similarly increases. Knowledge of the NO2/NOx ratio emitted from a diesel engine is necessary, particularly for ensuring optimum performance of NOx aftertreatment systems. In this work, cycle-to-cycle NO and NOx emissions have been measured using a Cambustion CLD500, and the cyclic NO2/NOx ratio calculated as a high-speed light-duty diesel engine undergoes transient steps in load, while all other engine parameters are held constant across a wide range of operating conditions with and without exhaust gas recirculation. The results show that changes in NO and NOx, and hence NO2/NOx ratio, are instantaneous upon a step change in engine load. NO2/NOx ratios have been observed in line with previously reported results, although at the lightest engine loads and at high levels of exhaust gas recirculation, higher levels of NO2 than have been previously reported in the literature are observed.


Sign in / Sign up

Export Citation Format

Share Document