scholarly journals Effects of exhaust gas recirculation at various loads on diesel engine performance and exhaust particle size distribution using four blends with a research octane number of 70 and diesel

2017 ◽  
Vol 149 ◽  
pp. 918-927 ◽  
Author(s):  
Shuli Wang ◽  
Xinda Zhu ◽  
L.M.T. Somers ◽  
L.P.H. de Goey
2017 ◽  
Vol 110 ◽  
pp. 26-31 ◽  
Author(s):  
Mohd Hafizil Mat Yasin ◽  
Rizalman Mamat ◽  
Ahmad Fitri Yusop ◽  
Daing Mohamad Nafiz Daing Idris ◽  
Talal Yusaf ◽  
...  

2013 ◽  
Vol 664 ◽  
pp. 926-930
Author(s):  
Wei Zhang ◽  
Xiao Dong Wang ◽  
Rui Sun ◽  
Jian Wei Sun ◽  
Wei Han

The effects of EGR operating mode on particulate morphology were investigated for a 5.79-liter diesel engine which was equipped with a turbocharged and inter-cooled air induction system, a common-rail direct fuel injection system, and an EGR system. Morphological characteristics, such as primary particle size, number concentration and aggregate particle size were investigated by a transmission electron microscope (TEM) analysis and a electrical low pressure impactor (ELPI) under engine operating conditions of 0.41 in fuel/air ratio at different exhaust gas recirculation (EGR) rate from 0~35%. The experimental results indicated that primary particle were in the range of 17.05nm~18.34nm, which increased with increased EGR rate. As EGR rate increased, aggregate particle size were measured in a narrow range from 120nm to 170nm.


2009 ◽  
Vol 138 (3) ◽  
pp. 28-36
Author(s):  
Sathaporn CHUEPENG ◽  
Hongming XU ◽  
Athanasios TSOLAKIS ◽  
Mirosław WYSZYŃSKI ◽  
Jonathan HARLAND

The paper presents characterisations of nanoparticle number in exhaust gases from biodiesel blends (B30, 30% of RME by volume with ultra low sulphur diesel fuel, ULSD) combustion in a V6 diesel engine equipped with a common rail fuel injection system. The engine was operated on three steady-state test points extracted from the New European Driving Cycle without engine hardware or the engine management system (EMS) modification. A fast differential mobility spectrometer was used to determine particle number size distribution based on electrical mobility equivalent diameter. The distribution was dependent on the engine operating condition and the rate of exhaust gas recirculation (EGR). The particle size in the nucleation mode from B30 combustion with and without EGR is smaller than that of ULSD while giving higher number concentration for all engine operating conditions tested. However, in the accumulation mode with and without EGR, the smaller sizes and the lower total numbers from B30 combustion were observed. For both fuels, EGR shows insignificant changes to the primary particle size but noticeable increase in particle size and number in the accumulation mode. In overall, compared to the ULSD case, the B30 combustion reduced particle size and lowered total particle number in exhaust gas emitted from the engine with EGR.


Author(s):  
Markus Stumpf ◽  
Sascha Merkel ◽  
Peter Eckert ◽  
Uwe Wagner ◽  
Amin Velji ◽  
...  

The purpose of this study was the characterization of the size distribution and the concentration of the particles emitted by diesel engines under various speed and load points, and different injection pressures. Fine and ultrafine particles emitted by modern diesel engines, in particular those with sizes below 100 nm, are of significant importance for the human health, since the latter are respirable and may have therefore negative effects. The investigations described in this paper provide an insight into the formation of soot particles in the combustion chamber and their number concentration and size distribution in the exhaust gas pipe. The experiments were performed on a single cylinder diesel engine. For the purpose of comparability to multi cylinder engines, the crankshaft drive, the liner, the piston and the cylinder head were based on a heavy duty production engine. The engine was operated with a common rail injection system which was controlled by an electronic control device that offered several degrees of freedom regarding number, duration and timing of the single injections. During the investigations the engine was operated at several speed and load points with and without pilot injection. The in-cylinder soot concentration was measured crank angle resolved with the two-color-method. The Filter-Smoke-Number (FSN) and the NOx concentration were determined in the exhaust gas. Furthermore the particle number and the particle size distribution were measured by means of a Scanning Mobility Particle Sizer (SMPS). The main focus of the experiments was on the investigation of the in-cylinder soot concentration and the particle size distribution running the engine at several injection pressures during different engine speed/load configurations. In order to obtain a potential correlation to common exhaust gas quantification methods, the Filter-Smoke-Number was measured simultaneously. The results of the experiments provide knowledge which is of eminent importance with respect to further diesel combustion development with regard to both the soot concentration and the soot particle properties.


Author(s):  
Y J Qian ◽  
C J Zuo ◽  
J Tan ◽  
H M Xu

This article presents the potential of improving engine performance and pollutant emissions of a ZS195 Diesel engine by exhaust gas recirculation (EGR) and intake hydrogen enrichment. The effect of EGR level and hydrogen addition on the engine performance and pollutant emissions has been investigated through detailed experiments at rated speed. The experimental results have shown that when EGR level is constant, the peak pressure and maximum rate of pressure rise increase with the increase of hydrogen addition. The intake hydrogen enrichment can reduce HC, CO, and soot level and increase NOX emission, but EGR technique can offset this effect. The combustion speed and thermal efficiency increase with the increase of hydrogen addition when EGR technique has been adopted.


Author(s):  
S. Adinarayana ◽  
YMC Sekhar ◽  
M. Anil Prakash ◽  
BVA Rao

Biodiesels reduce the emissions like HC, CO and particulate matter to minimum possible extent. But the NOx emissions increase because of the reason that the biodiesel is an oxygenated fuel. To contain this particular emission which is responsible for the human health degradation, acid rain, smog creation etc., the Exhaust Gas Recirculation (EGR) technique is resorted to. In this paper, a laboratory based DI diesel engine is run with neat biodiesel (Jatropha Methyl Ester) and cooled EGR which replaces a part of incoming air during suction. Various percentages (viz.0%, 7%, and 14%) of EGR were practiced to investigate the effect on the engine performance and tail pipe emissions. EGR dilutes the charge in the cylinder and thus reduces the peak combustion temperatures. Lower combustion temperatures decrease the formation of NOx with the marginal penalty of increase in other emissions. A comparison was made with the implementation of neat diesel and EGR application to consolidate the performance differences emerge in these cases. 7% EGR is proved to be the best percentage by considering both engine performance and emissions.


Sign in / Sign up

Export Citation Format

Share Document