scholarly journals PHISHING WEBSITES CLASSIFICATION USING ARTIFICIAL NEURAL NETWORK

Author(s):  
Noor Hazirah Hassan ◽  
Abdul Sahli Fakharudin

Internet users might be exposed to various forms of threats that can create economic harm, identity fraud, and lack of faith in e-commerce and online banking by consumers as the internet has become a necessary part of everyday activities. Phishing can be regarded as a type of web extortions described as the skill of imitating an honest company's website aimed at obtaining private information for example usernames, passwords, and bank information. The accuracy of classification is very significant in order to produce high accuracy results and least error rate in classification of phishing websites. The objective of this research is to model a suitable neural network classifier and then use the model to class the phishing website data set and evaluate the performance of the classifier. This research will use a phishing website data set which was retrieved from UCI repository and will be experimented using Encog Workbench tool. The main expected outcome from this study is the preliminary ANN classifier which classifies the target class of the phishing websites data set accurately, either phishy, suspicious or legitimate ones. The results indicate that ANN (9-5-1) model outperforms other models by achieving the highest accuracy and the least MSE value which is 0.04745.

2017 ◽  
Vol 25 (0) ◽  
pp. 42-48 ◽  
Author(s):  
Abul Hasnat ◽  
Anindya Ghosh ◽  
Amina Khatun ◽  
Santanu Halder

This study proposes a fabric defect classification system using a Probabilistic Neural Network (PNN) and its hardware implementation using a Field Programmable Gate Arrays (FPGA) based system. The PNN classifier achieves an accuracy of 98 ± 2% for the test data set, whereas the FPGA based hardware system of the PNN classifier realises about 94±2% testing accuracy. The FPGA system operates as fast as 50.777 MHz, corresponding to a clock period of 19.694 ns.


2016 ◽  
Vol 7 (1) ◽  
pp. 33-49 ◽  
Author(s):  
Suruchi Chawla

In this paper novel method is proposed using hybrid of Genetic Algorithm (GA) and Back Propagation (BP) Artificial Neural Network (ANN) for learning of classification of user queries to cluster for effective Personalized Web Search. The GA- BP ANN has been trained offline for classification of input queries and user query session profiles to a specific cluster based on clustered web query sessions. Thus during online web search, trained GA –BP ANN is used for classification of new user queries to a cluster and the selected cluster is used for web page recommendations. This process of classification and recommendations continues till search is effectively personalized to the information need of the user. Experiment was conducted on the data set of web user query sessions to evaluate the effectiveness of Personalized Web Search using GA optimized BP ANN and the results confirm the improvement in the precision of search results.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Yinjie Xie ◽  
Wenxin Dai ◽  
Zhenxin Hu ◽  
Yijing Liu ◽  
Chuan Li ◽  
...  

Among many improved convolutional neural network (CNN) architectures in the optical image classification, only a few were applied in synthetic aperture radar (SAR) automatic target recognition (ATR). One main reason is that direct transfer of these advanced architectures for the optical images to the SAR images easily yields overfitting due to its limited data set and less features relative to the optical images. Thus, based on the characteristics of the SAR image, we proposed a novel deep convolutional neural network architecture named umbrella. Its framework consists of two alternate CNN-layer blocks. One block is a fusion of six 3-layer paths, which is used to extract diverse level features from different convolution layers. The other block is composed of convolution layers and pooling layers are mainly utilized to reduce dimensions and extract hierarchical feature information. The combination of the two blocks could extract rich features from different spatial scale and simultaneously alleviate overfitting. The performance of the umbrella model was validated by the Moving and Stationary Target Acquisition and Recognition (MSTAR) benchmark data set. This architecture could achieve higher than 99% accuracy for the classification of 10-class targets and higher than 96% accuracy for the classification of 8 variants of the T72 tank, even in the case of diverse positions located by targets. The accuracy of our umbrella is superior to the current networks applied in the classification of MSTAR. The result shows that the umbrella architecture possesses a very robust generalization capability and will be potential for SAR-ART.


2020 ◽  
Vol 10 (6) ◽  
pp. 1999 ◽  
Author(s):  
Milica M. Badža ◽  
Marko Č. Barjaktarović

The classification of brain tumors is performed by biopsy, which is not usually conducted before definitive brain surgery. The improvement of technology and machine learning can help radiologists in tumor diagnostics without invasive measures. A machine-learning algorithm that has achieved substantial results in image segmentation and classification is the convolutional neural network (CNN). We present a new CNN architecture for brain tumor classification of three tumor types. The developed network is simpler than already-existing pre-trained networks, and it was tested on T1-weighted contrast-enhanced magnetic resonance images. The performance of the network was evaluated using four approaches: combinations of two 10-fold cross-validation methods and two databases. The generalization capability of the network was tested with one of the 10-fold methods, subject-wise cross-validation, and the improvement was tested by using an augmented image database. The best result for the 10-fold cross-validation method was obtained for the record-wise cross-validation for the augmented data set, and, in that case, the accuracy was 96.56%. With good generalization capability and good execution speed, the new developed CNN architecture could be used as an effective decision-support tool for radiologists in medical diagnostics.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
I. Jasmine Selvakumari Jeya ◽  
S. N. Deepa

A proposed real coded genetic algorithm based radial basis function neural network classifier is employed to perform effective classification of healthy and cancer affected lung images. Real Coded Genetic Algorithm (RCGA) is proposed to overcome the Hamming Cliff problem encountered with the Binary Coded Genetic Algorithm (BCGA). Radial Basis Function Neural Network (RBFNN) classifier is chosen as a classifier model because of its Gaussian Kernel function and its effective learning process to avoid local and global minima problem and enable faster convergence. This paper specifically focused on tuning the weights and bias of RBFNN classifier employing the proposed RCGA. The operators used in RCGA enable the algorithm flow to compute weights and bias value so that minimum Mean Square Error (MSE) is obtained. With both the lung healthy and cancer images from Lung Image Database Consortium (LIDC) database and Real time database, it is noted that the proposed RCGA based RBFNN classifier has performed effective classification of the healthy lung tissues and that of the cancer affected lung nodules. The classification accuracy computed using the proposed approach is noted to be higher in comparison with that of the classifiers proposed earlier in the literatures.


2019 ◽  
Vol 8 (3) ◽  
pp. 4373-4378

The amount of data belonging to different domains are being stored rapidly in various repositories across the globe. Extracting useful information from the huge volumes of data is always difficult due to the dynamic nature of data being stored. Data Mining is a knowledge discovery process used to extract the hidden information from the data stored in various repositories, termed as warehouses in the form of patterns. One of the popular tasks of data mining is Classification, which deals with the process of distinguishing every instance of a data set into one of the predefined class labels. Banking system is one of the realworld domains, which collects huge number of client data on a daily basis. In this work, we have collected two variants of the bank marketing data set pertaining to a Portuguese financial institution consisting of 41188 and 45211 instances and performed classification on them using two data reduction techniques. Attribute subset selection has been performed on the first data set and the training data with the selected features are used in classification. Principal Component Analysis has been performed on the second data set and the training data with the extracted features are used in classification. A deep neural network classification algorithm based on Backpropagation has been developed to perform classification on both the data sets. Finally, comparisons are made on the performance of each deep neural network classifier with the four standard classifiers, namely Decision trees, Naïve Bayes, Support vector machines, and k-nearest neighbors. It has been found that the deep neural network classifier outperforms the existing classifiers in terms of accuracy


Sign in / Sign up

Export Citation Format

Share Document