An appraisal of characteristic mechanical properties and microstructure of friction stir welding for Aluminium 6061 alloy – Silicon Carbide (SiCp) metal matrix composite

2019 ◽  
Vol 13 (4) ◽  
pp. 5804-5817
Author(s):  
Ibrahim Sabry

It is expected that the demand for Metal Matrix Composite (MMCs) will increase in these applications in the aerospace and automotive industries sectors, strengthened AMC has different advantages over monolithic aluminium alloy as it has characteristics between matrix metal and reinforcement particles.  However, adequate joining technique, which is important for structural materials, has not been established for (MMCs) yet. Conventional fusion welding is difficult because of the irregular redistribution or reinforcement particles.  Also, the reaction between reinforcement particles and aluminium matrix as weld defects such as porosity in the fusion zone make fusion welding more difficult. The aim of this work was to show friction stir welding (FSW) feasibility for entering Al 6061/5 to Al 6061/18 wt. % SiCp composites has been produced by using stir casting technique. SiCp is added as reinforcement in to Aluminium alloy (Al 6061) for preparing metal matrix composite. This method is less expensive and very effective. Different rotational speeds,1000 and 1800 rpm and traverse speed 10 mm \ min was examined. Specimen composite plates having thick 10 mm were FS welded successfully. A high-speed steel (HSS) cylindrical instrument with conical pin form was used for FSW. The outcome revealed that the ultimate tensile strength of the welded joint (Al 6061/18 wt. %) was 195 MPa at rotation speed 1800 rpm, the outcome revealed that the ultimate tensile strength of the welded joint (Al 6061/18 wt.%) was 165 MPa at rotation speed 1000 rpm, that was very near to the composite matrix as-cast strength. The research of microstructure showed the reason for increased joint strength and microhardness. The microstructural study showed the reason (4 %) for higher joint strength and microhardness.  due to Significant   of SiCp close to the boundary of the dynamically recrystallized and thermo mechanically affected zone (TMAZ) was observed through rotation speed 1800 rpm. The friction stir welded ultimate tensile strength Decreases as the volume fraction increases of SiCp (18 wt.%).

2021 ◽  
Vol 15 (4) ◽  
pp. 8644-8652
Author(s):  
Ibrahim Sabry

Demand for metal matrix composites (MMCs) is expected to increase in these applications, such as ‎in the aerospace and automotive sectors.  Adequate joining techniques, which are important for ‎structural materials, have not yet been developed for Metal Matrix Composite (MMCs), however.  ‎This work aimed to demonstrate the feasibility of ‎friction stir welding (FSW) and ‎underwater friction stir welding (UFSW) for joining Al 6061/5, Al 6061/10, and Al ‎‎6061/18 wt. %SiC composites have been produced by utilizing reinforce stir casting technique. Two ‎rotational ‎speeds,1000and 1800 rpm, and traverse speed 10mm \ min were examined. Specimen ‎composite plates 10 mm thick have been successfully welded by FSW. For FSW and UFSW, a tool ‎made of high-speed steel (HSS) with a conical pin shape was used. The result revealed that the ‎ultimate tensile strength of the welded joint by FSW and UFSW at rotation speed 1800 rpm for (Al ‎‎6061/18 wt. ‎‎% SiC composites) was 195 MPa and 230 MPa respectively. The ultimate ‎tensile ‎strength of the welded joint by FSW  and UFSW (Al 6061/18 wt.% SiCe composites) was 165 MPa ‎and 180 MPa at rotation speed ‎‎1000 rpm respectively. The microstructural assessment showed that due ‎to larger grain sizes at FSW and UFSW, most of the fractures are located in the thermal ‎mechanically affected zone (TMAZ) adjacent to the weld nugget zone (WNZ). It is observed that in ‎failure, most of the joints show ductile features. As the volume fraction of SiC (18 wt.%) increases, ‎the friction stir welded and underwater friction stir welded efficiency decreases.


2020 ◽  
Vol 12 (10) ◽  
pp. 1285-1288
Author(s):  
Ajay Biswas ◽  
Abhijit Bhowmik ◽  
Dipankar Dey ◽  
Akshar S. Vasekar

Application of composite materials are increasing remarkably because of its much advantage compared to base matrix alloys properties like reduced weight, increasing strength, increasing wear resistance capacity etc. Reinforcement particles play a very important role for preparing metal matrix composite and ultimately improve its properties. In the present experiment, Al6063 designated aluminium alloy is used as matrix material and borosilicate glass powder is used as reinforcement. Specimens are prepared by stir casting method. Borosilicate glass is collected from scientific laboratory scrap to support disposal as well as recycle of the waste glass materials. In order to reduce the experimental run, the design of experiment is incorporated as per Taguchi’s L9 orthogonal array. It is observed that glass reinforcement in Al6063 aluminium alloy is compatible to form metal matrix composite. Secondly, ultimate tensile strength of the composite increases in selected combination of grain size and weight ratio of the borosilicate glass powder to the metal matrix.


2020 ◽  
Vol 54 (27) ◽  
pp. 4283-4297
Author(s):  
Nagender Kumar Chandla ◽  
Yashpal ◽  
Suman Kant ◽  
MM Goud ◽  
CS Jawalkar

This experimental analysis aimed to fabricate low cost, lightweight metal matrix composite using Al 6061 as matrix material and alumina (Al2O3) and bagasse ash as reinforcing material through stir casting process. In this process one cast of single reinforced composite (Al 6061/5 wt% Al2O3) and three casts of hybrid reinforced composite (Al 6061/5 wt% Al2O3/ 4, 6, 8 wt% bagasse ash) were developed and processed as per ASTM standards followed by mechanical (micro-hardness, ductility, compression, tensile, and impact strength), physical (density and porosity), and microstructure (optical and SEM microscopy) characterization. The mechanical properties such as tensile strength, hardness, and compressive strength showed good improvements in the manufactured hybrid reinforced metal matrix composite (HRMMC) in comparison with the single reinforced metal matrix composite (SRMMC). The tensile strength and hardness of developed composite increased continuously with an increase in bagasse ash contents up to 6 wt% having maximum increment of 9.09% (tensile) and 16.5% (hardness) and thereafter both decreased for 8 wt% of bagasse ash, respectively. The results of impact strength and ductility of Al 6061/Al2O3/bagasse ash showed marginal reduction, as the wt% of reinforcements increased. It was found that the density of HRMMC was less than the SRMMC and it decreased with increasing wt% of reinforcements however, the composite contained some porosity percentage (max. value 2.26%), which increased as the wt% of reinforcement increased. The microstructure analysis showed fair distribution with good interface bonding up to 6 wt% bagasse ash.


Author(s):  
G Girish ◽  
V Anandakrishnan

In this work, an Al–Zn–Mg–Cu/TiC metal–matrix composite was fabricated through recursive friction stir processing, and its microstructure, hardness, and tribological properties were investigated. Microstructure examination revealed a homogeneous dispersion of TiC particles in the matrix after six recursive passes. The grains were significantly refined and microhardness of the composite improved due to the presence of TiC particles. Friction coefficient and wear rate of the composite went up with an increase in the applied load and dropped significantly at higher sliding velocities. The morphology of the wear specimens experimented under different testing conditions was analyzed and the corresponding wear mechanisms discussed.


2021 ◽  
Author(s):  
Vipin Sharma ◽  
Yogesh Dewang ◽  
Pardeep Kumar Nagpal ◽  
Suresh Kumar

Abstract Metal matrix composites are an important class of material that is developing rapidly to fulfil the diversified engineering requirements. The metal matrix composites are attractive owing to superior properties as compared to monolithic material. Their properties are dependent on various factors and fabrication techniques. The metal matrix composites are associated with several issues which hinder their full potential. In the present study friction stir processing is applied on the metal matrix composite as a post-processing operation. The friction stir processing offers many advantages owing to the solid-state nature of the processing. Stir cast metal matrix composites are prepared by using zircon sand particles of 50 µm in the matrix of LM13 aluminium alloy. The friction stir processing is applied on the metal matrix plates at a constant rotational speed and traverse speed of 1400 rpm and 63 mm/min, respectively. Multiple passes of friction stir processing are applied to elucidate the effect of the number of passes on microstructural modification. Microstructural examination showed a significant improvement in eutectic silicon morphology and distribution of zircon sand particles. A more than 5 times reduction as compared to the initial size was observed in the zircon sand particles after four passes of friction stir processing. The processed metal matrix composite also exhibits improvement in tensile strength and hardness.


2019 ◽  
Vol 16 ◽  
pp. 1279-1286 ◽  
Author(s):  
N. Dilip Raja ◽  
S.T. Selvamani ◽  
M. Vigneshwar ◽  
K. Palanikumar ◽  
R. Velu

Sign in / Sign up

Export Citation Format

Share Document