Study of Ultimate Tensile Strength of Borosilicate Reinforced Metal Matrix Composite

2020 ◽  
Vol 12 (10) ◽  
pp. 1285-1288
Author(s):  
Ajay Biswas ◽  
Abhijit Bhowmik ◽  
Dipankar Dey ◽  
Akshar S. Vasekar

Application of composite materials are increasing remarkably because of its much advantage compared to base matrix alloys properties like reduced weight, increasing strength, increasing wear resistance capacity etc. Reinforcement particles play a very important role for preparing metal matrix composite and ultimately improve its properties. In the present experiment, Al6063 designated aluminium alloy is used as matrix material and borosilicate glass powder is used as reinforcement. Specimens are prepared by stir casting method. Borosilicate glass is collected from scientific laboratory scrap to support disposal as well as recycle of the waste glass materials. In order to reduce the experimental run, the design of experiment is incorporated as per Taguchi’s L9 orthogonal array. It is observed that glass reinforcement in Al6063 aluminium alloy is compatible to form metal matrix composite. Secondly, ultimate tensile strength of the composite increases in selected combination of grain size and weight ratio of the borosilicate glass powder to the metal matrix.

2019 ◽  
Vol 13 (4) ◽  
pp. 5804-5817
Author(s):  
Ibrahim Sabry

It is expected that the demand for Metal Matrix Composite (MMCs) will increase in these applications in the aerospace and automotive industries sectors, strengthened AMC has different advantages over monolithic aluminium alloy as it has characteristics between matrix metal and reinforcement particles.  However, adequate joining technique, which is important for structural materials, has not been established for (MMCs) yet. Conventional fusion welding is difficult because of the irregular redistribution or reinforcement particles.  Also, the reaction between reinforcement particles and aluminium matrix as weld defects such as porosity in the fusion zone make fusion welding more difficult. The aim of this work was to show friction stir welding (FSW) feasibility for entering Al 6061/5 to Al 6061/18 wt. % SiCp composites has been produced by using stir casting technique. SiCp is added as reinforcement in to Aluminium alloy (Al 6061) for preparing metal matrix composite. This method is less expensive and very effective. Different rotational speeds,1000 and 1800 rpm and traverse speed 10 mm \ min was examined. Specimen composite plates having thick 10 mm were FS welded successfully. A high-speed steel (HSS) cylindrical instrument with conical pin form was used for FSW. The outcome revealed that the ultimate tensile strength of the welded joint (Al 6061/18 wt. %) was 195 MPa at rotation speed 1800 rpm, the outcome revealed that the ultimate tensile strength of the welded joint (Al 6061/18 wt.%) was 165 MPa at rotation speed 1000 rpm, that was very near to the composite matrix as-cast strength. The research of microstructure showed the reason for increased joint strength and microhardness. The microstructural study showed the reason (4 %) for higher joint strength and microhardness.  due to Significant   of SiCp close to the boundary of the dynamically recrystallized and thermo mechanically affected zone (TMAZ) was observed through rotation speed 1800 rpm. The friction stir welded ultimate tensile strength Decreases as the volume fraction increases of SiCp (18 wt.%).


In most of the engineering applications such as aviation, defence, marine and automotive requires components with light weight and along with favorable mechanical properties; this demand perhaps satisfied by metal matrix composites (MMCs) of aluminium by virtue of its distinguished achievement. Also MMCs suffer from insufficient process stability, in-adequate economic efficiency and reliability. In the present research work an experiment was developed to synthesize metal matrix composite adopting Aluminium Alloy (AA) 5083 as matrix material reinforced with graphite particulates (6 wt %, 8 wt % & 10 wt %) using two stage in-situ stir casting process. Experiments were implemented to analyze mechanical and tribological properties like ultimate tensile strength, microhardness, wear characteristics and corrosion properties. From the above investigations, it is revealed that microhardness increases with decrease in tensile strength with upsurge in more wt % of reinforcement. Due to the very high self-lubricating property of graphite significant reduction in wear can be observed with deepen in wt % of graphite. Also corrosion rate decreases with more amount of graphite particulate when compared with base matrix material.


2019 ◽  
Vol 28 (1) ◽  
pp. 20-28 ◽  
Author(s):  
Shashi Prakash Dwivedi ◽  
Garima Dwivedi

AbstractIn the present investigation, rice husk waste from rice mill was utilized in the development of aluminum based green metal matrix composite. Response surface methodology (RSM) was employed to develop green metal matrix composite by considering tensile strength as a response. Rice husk ash (RHA) was used as primary reinforcement material and B4C was used as a secondary reinforcement material in the development of composite. Microstructure results showed a uniform distribution of RHA and B4C in aluminum based matrix material. The optimum combination of reinforcement parameters was found to be RHA weight percentage of 7.8%, RHA preheats temperature of 231.12∘C, B4C preheats temperature of 435.24∘C and B4C wt.% of 6.67% respectively to achieve a tensile strength of 249.867 MPa.


2013 ◽  
Vol 58 (3) ◽  
pp. 659-662 ◽  
Author(s):  
K. Gawdzińska

Abstract In this paper it is stated, that a set of quality features of metal matrix composite castings differs from the same set for castings of classic materials, although some features are common for both of these material groups. These features (pertaining to a set of quality characteristics of composite castings) have been named as specific, they have not been determined yet and a description of material quality should be performed (according to the qualitology) on a principle of description of quality characteristics of this product. Therefore, this set of features has been determined. It was proposed to add the following characteristics to the set of specific features of composite castings quality: matrix material, reinforcement material, binding between components and porosity of the composite casting. In this set a sub-set of quality characteristics of composite castings was also determined.


2018 ◽  
Vol 7 (3.6) ◽  
pp. 101 ◽  
Author(s):  
G Jims John Wessley ◽  
A Gaith Franklin ◽  
S J. Vijay

This paper presents the development and characterization of aluminium alloy 6063 based metal matrix composite with varying combinations of fly ash and Borosilicate reinforcements.  In the present work, the aluminium alloy 6063 (AA) is taken at a constant 84 vol% while the reinforcements Fly Ash (FA) and Borosilicate (B) are varied in the proportions of 2%, 4% 8%, 125 and 14%. Six samples were fabricated by stir casting and the mechanical properties were analyzed using tensile test, hardness test and wear test while the microstructure is analyzed by obtaining SEM and EDX images of the specimen. It is seen that both the reinforcements used in this study, increased the tensile and wear resistance of the alloy. The desirable mechanical and micro structural properties were found to be in the specimen with 84% AA, 14% FA and 2% B. The tensile strength of the aluminum alloy at this desirable combination is found to increase by 11.97%, ductility by 36.75% and the wear resistance by 62%.  This metal matrix composite of AA6063 with fly ash and Borosilicate reinforcements can be used in automobile, aerospace and structural applications where wear resistance and tensile properties are mainly required.


2015 ◽  
Vol 766-767 ◽  
pp. 252-256 ◽  
Author(s):  
A. Siddique Ahmed Ghias ◽  
B. Vijaya Ramnath

The composite material is a combination of two or more materials with different physical and chemical properties. The composite has superior characteristics than those individual components. A hybrid composite is the one which contains at least three materials. When the matrix material is a metal, the composite is termed as metal matrix composites (MMC). The MMC is a composite material with two constituent parts, one being a metal. The other material may be another metal, ceramic or fiber. Among all the MMC’s, Aluminium is the most widely used matrix material due to its light weight, high strength and hardness. This paper deals with the fabrication and mechanical investigation of hybrid metal matrix composite Al - SiC. The fabrication is done by stir casting by adding the required quantities of additives into the stirred molten Aluminium. The results show significant effect of mechanical properties such as tensile strength, yield stress and flexural strength. The internal structure of the composite is observed using Scanning electron microscope (SEM) and found that are formation of pores in them.


2016 ◽  
Vol 852 ◽  
pp. 98-103
Author(s):  
P.S. Samuel Ratna Kumar ◽  
S. John Alexis ◽  
D.S. Robinson Smart

The interest in Multiwall Carbon Nanotube (MWCNT) as reinforcement for Aluminium alloy has been growing considerably because of its significant properties such as high Strength, elastic modulus, flexibility and high aspect ratios which makes the combination for being used in aerospace, automobile and marine applications. This work mainly focuses on the theoretical analysis of Strength and Young’s modulus of MWCNT addition with Aluminium 5083 metal matrix composite for different compositions like 1, 1.25, 1.5 and 1.75 weight %, representing that the MWCNT are effective reinforcement. The predicted value shows that, the addition of MWCNT is increasing the Young’s modulus and Strength for the composite compared to the AA5083 (Aluminium alloy).


Sign in / Sign up

Export Citation Format

Share Document