scholarly journals Design and numerical analysis of an efficient H-Darrieus vertical-axis hydrokinetic turbine

2019 ◽  
Vol 13 (4) ◽  
pp. 6036-6058
Author(s):  
Ramirez D. ◽  
Rubio-Clemente A. ◽  
E. Chica

Hydrokinetic turbines are one of the technological alternatives to generate and supply electricity for rural communities isolated from the national electrical grid with almost zero emission. The Darrieus turbine is one of the options that can be used as a hydrokinetic turbine due to its high power coefficient (Cp) and easy manufacture. In the present work, the design and hydrodynamic analysis of a Darrieus vertical-axis hydrokinetic turbine of 500 W was carried out. A free stream velocity of 1.5 m/s was used for the design of the blades. The diameter (D) and blade length (H) of the turbine were 1.5 m and 1.13 m, respectively. The blade profile used was NACA0025 with a chord length of 0.33 m and solidity () of 0.66. Two (2D) and three dimensional (3D) numerical analyses of the unsteady flow through the blades of the turbine were performed using ANSYS Fluent version 18.0, which is based on a Reynolds-Averaged Navier-Stokes (RANS) model. A transient 2D simulation was conducted for several tip speed ratios (TSR) using a k-ω Shear Stress Transport turbulence (SST) scheme. The optimal TSR was found to be around 1.75. Main hydrodynamic parameters, such as torque (T) and CP, were investigated. Additionally, 3 geometrical configurations of the turbine rotor were studied using a 3D numerical model in order to identify the best configuration with less Cp and T fluctuation. The maximum Cp average was 0.24 and the amplitude of Cp variation, near 0.24 for the turbine model with 3 blades of H equal to 1.13 m. On the other hand, for the turbine models with 6 and 9 blades of H equal to 0.565 m and 0.377 m, respectively, the maximum Cp averages were 0.51 and 0.55, respectively, and the amplitude of Cp variation, near 0.07 for the model with 6 blades and 0.17 for the model with 9 blades. This revealed that the hydrokinetic turbine with a geometrical configuration of 6 blades greatly improves the performance of the turbine due to this model has advantages compared to models with 3 and 9 blades, in terms of the reduction of their T curve fluctuation.

Author(s):  
Cosan Daskiran ◽  
Jacob Riglin ◽  
Alparslan Oztekin

Three-dimensional steady state Computational Fluid Dynamics (CFD) analyses were performed for a pre-designed micro-hydrokinetic turbine to investigate the blockage ratio effect on turbine performance. Simulations were conducted using a physical turbine rotor geometry rather than low fidelity, simplified actuator disk or actuator lines. The two-equation k-ω Shear Stress Transport (SST) turbulence model was employed to predict turbulence in the flow field. The turbine performance at the best efficiency point was studied for blockage ratios of 0.49, 0.70 and 0.98 for three different free stream velocities of 2.0 m/s, 2.25 m/s and 2.5 m/s. Distinct blockage ratio results at a free stream velocity of 2.25 were compared to a previous numerical study incorporating the same rotor geometry within an infinite flowing medium. The pressure gradient between turbine upstream and turbine downstream for blocked channel flows elevated the turbine performance. The increment in blockage ratio from 0.03 to 0.98 enhanced power coefficient from 0.437 to 2.254 and increased power generation from 0.56 kW to 2.86 kW for the present study.


Author(s):  
Jelena Svorcan ◽  
◽  
Ognjen Peković ◽  
Toni Ivanov ◽  
Miloš Vorkapić ◽  
...  

With wind energy extraction constantly increasing, the interest in small-scale urban wind turbines is also expanding. Given that these machines often work in adverse operating conditions (Earth’s boundary layer, vortex trails of surrounding objects, small and changeable wind speeds), additional elements that locally augment wind velocity and facilitate turbine start may be installed. This paper investigates possible benefits of adding an optimized flow concentrator to a vertical-axis wind turbine (VAWT) rotor. Three-dimensional, unsteady, turbulent, incompressible flow simulations of both isolated rotor consisting of three straight blades and a rotor with flow concentrator have been performed in ANSYS FLUENT by finite volume method for several different operational regimes. This type of flow simulations is challenging since flow angles are high, numerous flow phenomena and instabilities are present and the interaction between the blades and detached vortices can be significant. The rotational motion of the blades is solved by the unsteady Sliding Mesh (SM) approach. Flow field is modeled by Unsteady Reynolds Averaged Navier-Stokes (URANS) equations with k-ω SST turbulence model used for closure. Both quantitative and qualitative examinations of the obtained numerical results are presented. In particular, the two computed power coefficient curves are compared and the advantages of installing a flow concentrator are accentuated.


Author(s):  
Muhammed Musab Gavgali ◽  
Zbigniew Czyż ◽  
Jacek Czarnigowski

The paper presents the results of calculations of flow around the vertical axis wind turbine. Three-dimensional calculations were performed using ANSYS Fluent. They were made at steady-state conditions for a wind speed of 3 m/s for 4 angular settings of the three-bladed rotor. The purpose of the calculations was to determine the values of the aerodynamic forces acting on the individual blades and to present the pressure contours on the surface of turbine rotor blades. The calculations were made for 4 rotor angular settings


2021 ◽  
pp. 1-37
Author(s):  
Mabrouk Mosbahi ◽  
Mouna Derbel ◽  
Mariem Lajnef ◽  
Bouzid Mosbahi ◽  
Zied Driss ◽  
...  

Abstract Twisted Darrieus water turbine is receiving growing attentiveness for small-scale hydropower generation. Accordingly, the need for raised water energy conversion incentivizes researchers to focalise on the blade shape optimization of twisted Darrieus turbine. In view of this, an experimental analysis has been performed to appraise the efficiency of a spiral Darrieus water rotor in the present work. To better the performance parameters of the studied water rotor with twisted blades, three novel blade shapes, namely U-shaped blade, V-shaped blade and W-shaped blade, have been numerically tested using a computational fluid dynamics three-dimensional numerical model. Maximum power coefficient of Darrieus rotor reaches 0.17 at 0.63 tip-speed ratio using twisted blades. Using V-shaped blades, maximum power coefficient has been risen up to 0.185. The current study could be practically applied to provide more effective employment of twisted Darrieus turbines and to improve the generated power from flowing water such as river streams, tidal currents, or other man made water canals.


2018 ◽  
Vol 7 (4.38) ◽  
pp. 1395 ◽  
Author(s):  
Kadhim H. Suffer ◽  
Yassr Y. Kahtan ◽  
Zuradzman M. Razlan

The present global energy economy suggests the use of renewable sources such as solar, wind, and biomass to produce the required power. The vertical axis wind turbine is one of wind power applications. Usually, when the vertical axis wind turbine blades are designed from the airfoil, the starting torque problem begins. The main objective of this research is to numerically simulate the combination of movable vanes of a flat plate with the airfoil in a single blade configuration to solve the starting torque problem. CFD analysis in ANSYS-FLUENT and structural analysis in ANSYS of combined blade vertical axis wind turbine rotor has been undertaken. The first simulation is carried out to investigations the aerodynamic characteristic of the turbine by using the finite volume method. While the second simulation is carried out with finite element method for the modal analysis to find the natural frequencies and the mode shape in order to avoid extreme vibration and turbine failure, the natural frequencies, and their corresponding mode shapes are studied and the results were presented with damping and without damping for four selected cases. The predicted results show that the static pressure drop across the blade increase in the active blade side because of the vanes are fully closed and decrease in the negative side because of the all the vanes are fully open. The combined blade helps to increase turbine rotation and so, thus, the power of the turbine increases. While the modal results show that until the 5th natural frequency the effect of damping can be neglected. The predicted results show agreement with those reported in the literature for VAWT with different blade designs.   


Author(s):  
N. Cristobal Uzarraga-Rodriguez ◽  
A. Gallegos-Mun˜oz ◽  
J. Manuel Riesco A´vila

A numerical analysis of a rooftop vertical axis wind turbine (VAWT) for applications in urban area is presented. The numerical simulations were developed to study the flow field through the turbine rotor to analyze the aerodynamic performance characteristics of the device. Three different blade numbers of wind turbine are studied, 2, 3 and 4, respectively. Each one of the models was built in a 3D computational model. The effects generated in the performance of turbines by the numbers of blades are considered. A Sliding Mesh Model (SMM) capability was used to present the dimensionless form of coefficient power and coefficient moment of the wind turbine as a function of the wind velocity and the rotor rotational speed. The numerical study was developed in CFD using FLUENT®. The results show the aerodynamic performance for each configuration of wind turbine rotor. In the cases of Rooftop rotor the power coefficient increases as the blade number increases, while in the case of Savonius rotor the power coefficient decrease as the blades number increases.


2018 ◽  
Vol 1 (1 (Aug)) ◽  
pp. 41-50 ◽  
Author(s):  
P. Modali ◽  
N. S. Kolekar ◽  
A. Banerjee

In tidal streams and rivers, the flow of water can be at yaw to the turbine rotor plane causing performance degradation and a skewed downstream wake. The current study aims to quantify the performance variation and associated wake behavior caused by a tidal turbine operating in a yawed inflow environment. A three-dimensional computational fluid dynamics study was carried out using multiple reference frame approach using κ-ω SST turbulence model with curvature correction. The computations were validated by comparison with experimental results on a 1:20 scale prototype for a 0° yaw case performed in a laboratory flume. The simulations were performed using a three-bladed, constant chord, untwisted tidal turbine operating at uniform inflow. Yaw effects were observed for angles ranging from 5° to 15°. An increase in yaw over this range caused a power coefficient deficit of 26% and a thrust coefficient deficit of about 8% at a tip speed ratio of 5 that corresponds to the maximum power coefficient for the tested turbine. In addition, wake propagation was studied up to a downstream distance of ten rotor radius, and skewness in the wake, proportional to yaw angle was observed. At higher yaw angles, the flow around the turbine rotor was found to cushion the tip vortices, accelerating the interaction between the tip vortices and the skewed wake, thereby facilitating a faster wake recovery. The center of the wake was tracked using a center of mass technique. The center of wake analysis was used to better quantify the deviation of the wake with increasing yaw angle. It was observed that with an increase in yaw angle, the recovery distance moved closer to the rotor plane. The wake was noticed to meander around the turbine centerline with increasing downstream distance and slightly deviate towards the free surface above the turbine centerline, magnitude of which varied depending on yaw.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Gabriel Naccache ◽  
Marius Paraschivoiu

Small vertical axis wind turbines (VAWTs) are good candidates to extract energy from wind in urban areas because they are easy to install, service, and do not generate much noise; however, the efficiency of small turbines is low. Here-in a new turbine, with high efficiency, is proposed. The novel design is based on the classical H-Darrieus VAWT. VAWTs produce the highest power when the blade chord is perpendicular to the incoming wind direction. The basic idea behind the proposed turbine is to extend that said region of maximum power by having the blades continue straight instead of following a circular path. This motion can be performed if the blades turn along two axes; hence, it was named dual vertical axis wind turbine (D-VAWT). The analysis of this new turbine is done through the use of computational fluid dynamics (CFD) with two-dimensional (2D) and three-dimensional (3D) simulations. While 2D is used to validate the methodology, 3D is used to get an accurate estimate of the turbine performance. The analysis of a single blade is performed and the turbine shows that a power coefficient of 0.4 can be achieved, reaching performance levels high enough to compete with the most efficient VAWTs. The D-VAWT is still far from full optimization, but the analysis presented here shows the hidden potential and serves as proof of concept.


2021 ◽  
pp. 1-32
Author(s):  
Parag K. Talukdar ◽  
Nur Alom ◽  
Umang H. Rathod ◽  
Vinayak Kulkarni

Abstract The drag-based vertical-axis Savonius wind rotor is a potential candidate for harvesting renewable energy. It is very simple in design and can be deployed as an off-the-grid electricity system in remote locations having no access to electricity. The present work aims to develop a novel blade profile for the Savonius rotor in order to improve its performance. In that connection, an arc-elliptical-blade profile has been developed and rotor performance has been assessed through wind tunnel testing at three different Reynolds numbers (Re = 87039, 107348, and 131066). Further, its performance is compared to that of a conventional semicircular-bladed rotor under identical test conditions. The experiments revealed the maximum power coefficient (CPmax) of 0.11, 0.162, 0.213 at Re = 87039, 107348, and 131066, respectively for the arc-elliptical-bladed rotor. To complement the experimental findings and to examine the flow behaviour around the rotor blades, the computational fluid dynamics (CFD) simulations have also been performed using ANSYS FLUENT software. The local torque is found to be greater around the advancing arc-elliptical blade than around the advancing semicircular blade. It has been also noticed that the pressure distributions over concave sides are similar regardless of the blade shape.


2013 ◽  
Vol 465-466 ◽  
pp. 270-274 ◽  
Author(s):  
N. Afzanizam Samiran ◽  
A.A. Wahab ◽  
Mohd Sofian ◽  
N. Rosly

The present study considered the design improvement of Savonius rotor, in order to increase the efficiency of output power. An investigation was conducted to study the effect of geometrical configuration on the performance of the rotor in terms of coefficient of torque, coefficient of power and power output. Modification of conventional geometry has been designed by combining the effect of number of blades and shielding method. CFD simulation was conducted to analyze the flow characteristic and calculate the torque coefficient of all the rotor configurations. The continuity and Reynolds Averaged Navier-Stokes (RANS) equations and realizable k-ε epsilon turbulence model are numerically solved by commercial software Ansys-Fluent 14.0. The results obtained by transient and steady method for the conventional two bladed Savonius rotor are in agreement with those obtained experimentally by other authors and this indicates that the methods can be successfully applied for such analysis. The modified 3 and 4 bladed rotors with hybrid shielding method gave the highest maximum power coefficient which 0.37 at TSR 0.5 and output power exceed 4 watts with rotor dimensions of 0.2m width and 0.2m height. This blade configuration also is the best configuration by several percentages compared to the other model from the previous study


Sign in / Sign up

Export Citation Format

Share Document