Deep Learning Based Human Presence Detection

Mekatronika ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 55-61
Author(s):  
Venketaramana Balachandran ◽  
Muhammad Nur Aiman Shapiee ◽  
Ahmad Fakhri Ab. Nasir ◽  
Mohd Azraai Mohd Razman ◽  
Anwar P.P. Abdul Majeed

Human detection and tracking have been progressively demanded in various industries. The concern over human safety has inhibited the deployment of advanced and collaborative robotics, mainly attributed to the dimensionality limitation of present safety sensing. This study entails developing a deep learning-based human presence detector for deployment in smart factory environments to overcome dimensionality limitations. The objective is to develop a suitable human presence detector based on state-of-the-art YOLO variation to achieve real-time detection with high inference accuracy for feasible deployment at TT Vision Holdings Berhad. It will cover the fundamentals of modern deep learning based object detectors and the methods to accomplish the human presence detection task. The YOLO family of object detectors have truly revolutionized the Computer Vision and object detection industry and have continuously evolved since its development. At present, the most recent variation of YOLO includes YOLOv4 and YOLOv4 - Tiny. These models are acquired and pre-evaluated on the public CrowdHuman benchmark dataset. These algorithms mentioned are pre-trained on the CrowdHuman models and benchmarked at the preliminary stage. YOLOv4 and YOLOv4 – Tiny are trained on the CrowdHuman dataset for 4000 iterations and achieved a mean Average Precision of 78.21% at 25FPS and 55.59% 80FPS, respectively. The models are further fine-tuned on a  Custom CCTV dataset and achieved significant precision improvements up to 88.08% at 25 FPS and 77.70% at 80FPS, respectively. The final evaluation justified YOLOv4 as the most feasible model for deployment.  

2020 ◽  
Author(s):  
Nhan T. Nguyen ◽  
Dat Q. Tran ◽  
Dung B. Nguyen

ABSTRACTWe describe in this paper our deep learning-based approach for the EndoCV2020 challenge, which aims to detect and segment either artefacts or diseases in endoscopic images. For the detection task, we propose to train and optimize EfficientDet—a state-of-the-art detector—with different EfficientNet backbones using Focal loss. By ensembling multiple detectors, we obtain a mean average precision (mAP) of 0.2524 on EDD2020 and 0.2202 on EAD2020. For the segmentation task, two different architectures are proposed: UNet with EfficientNet-B3 encoder and Feature Pyramid Network (FPN) with dilated ResNet-50 encoder. Each of them is trained with an auxiliary classification branch. Our model ensemble reports an sscore of 0.5972 on EAD2020 and 0.701 on EDD2020, which were among the top submitters of both challenges.


2004 ◽  
Vol 37 (8) ◽  
pp. 986-991
Author(s):  
Iñaki Rañó ◽  
Bogdan Raducanu ◽  
Sriram Subramanian

Author(s):  
M A Isayev ◽  
D A Savelyev

The comparison of different convolutional neural networks which are the core of the most actual solutions in the computer vision area is considers in hhe paper. The study includes benchmarks of this state-of-the-art solutions by some criteria, such as mAP (mean average precision), FPS (frames per seconds), for the possibility of real-time usability. It is concluded on the best convolutional neural network model and deep learning methods that were used at particular solution.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1451
Author(s):  
Muhammad Hammad Saleem ◽  
Sapna Khanchi ◽  
Johan Potgieter ◽  
Khalid Mahmood Arif

The identification of plant disease is an imperative part of crop monitoring systems. Computer vision and deep learning (DL) techniques have been proven to be state-of-the-art to address various agricultural problems. This research performed the complex tasks of localization and classification of the disease in plant leaves. In this regard, three DL meta-architectures including the Single Shot MultiBox Detector (SSD), Faster Region-based Convolutional Neural Network (RCNN), and Region-based Fully Convolutional Networks (RFCN) were applied by using the TensorFlow object detection framework. All the DL models were trained/tested on a controlled environment dataset to recognize the disease in plant species. Moreover, an improvement in the mean average precision of the best-obtained deep learning architecture was attempted through different state-of-the-art deep learning optimizers. The SSD model trained with an Adam optimizer exhibited the highest mean average precision (mAP) of 73.07%. The successful identification of 26 different types of defected and 12 types of healthy leaves in a single framework proved the novelty of the work. In the future, the proposed detection methodology can also be adopted for other agricultural applications. Moreover, the generated weights can be reused for future real-time detection of plant disease in a controlled/uncontrolled environment.


2021 ◽  
Author(s):  
Amandip Sangha ◽  
Mohammad Rizvi

AbstractImportanceState-of-the art performance is achieved with a deep learning object detection model for acne detection. There is little current research on object detection in dermatology and acne in particular. As such, this work is early in this field and achieves state of the art performance.ObjectiveTrain an object detection model on a publicly available data set of acne photos.Design, Setting, and ParticipantsA deep learning model is trained with cross validation on a data set of facial acne photos.Main Outcomes and MeasuresObject detection models for detecting acne for single-class (acne) and multi-class (four severity levels). We train and evaluate the models using standard metrics such as mean average precision (mAP). Then we manually evaluate the model predictions on the test set, and calculate accuracy in terms of precision, recall, F1, true and false positive and negative detections.ResultsWe achieve state-of-the art mean average precision [email protected] value of 37.97 for the single class acne detection task, and 26.50 for the 4-class acne detection task. Moreover, our manual evaluation shows that the single class detection model performs well on the validation set, achieving true positive 93.59 %, precision 96.45 % and recall 94.73 %.Conclusions and RelevanceWe are able to train a high-accuracy acne detection model using only a small publicly available data set of facial acne. Transfer learning on the pre-trained deep learning model yields good accuracy and high degree of transferability to patient submitted photographs. We also note that the training of standard architecture object detection models has given significantly better accuracy than more intricate and bespoke neural network architectures in the existing research literature.Key PointsQuestionCan deep learning-based acne detection models trained on a small data set of publicly available photos of patients with acne achieve high prediction accuracy?FindingsWe find that it is possible to train a reasonably good object detection model on a small, annotated data set of acne photos using standard deep learning architectures.MeaningDeep learning-based object detection models for acne detection can be a useful decision support tools for dermatologists treating acne patients in a digital clinical practice. It can prove a particularly useful tool for monitoring the time evolution of the acne disease state over prolonged time during follow-ups, as the model predictions give a quantifiable and comparable output for photographs over time. This is particularly helpful in teledermatological consultations, as a prediction model can be integrated in the patient-doctor remote communication.


Author(s):  
Robinson Jimenez-Moreno ◽  
Astrid Rubiano Fonseca ◽  
Jose Luis Ramirez

This paper exposes the use of recent deep learning techniques in the state of the art, little addressed in robotic applications, where a new algorithm based on Faster R-CNN and CNN regression is exposed. The machine vision systems implemented, tend to require multiple stages to locate an object and allow a robot to take it, increasing the noise in the system and the processing times. The convolutional networks based on regions allow one to solve this problem, it is used for it two convolutional architectures, one for classification and location of three types of objects and one to determine the grip angle for a robotic gripper. Under the establish virtual environment, the grip algorithm works up to 5 frames per second with a 100% object classification, and with the implementation of the Faster R-CNN, it allows obtain 100% accuracy in the classifications of the test database, and over a 97% of average precision locating the generated boxes in each element, gripping successfully the objects.


Author(s):  
Ye Wang ◽  
Yueru Chen ◽  
Jongmoo Choi ◽  
C.-C. Jay Kuo

This paper reports a visible and thermal drone monitoring system that integrates deep-learning-based detection and tracking modules. The biggest challenge in adopting deep learning methods for drone detection is the paucity of training drone images especially thermal drone images. To address this issue, we develop two data augmentation techniques. One is a model-based drone augmentation technique that automatically generates visible drone images with a bounding box label on the drone's location. The other is exploiting an adversarial data augmentation methodology to create thermal drone images. To track a small flying drone, we utilize the residual information between consecutive image frames. Finally, we present an integrated detection and tracking system that outperforms the performance of each individual module containing detection or tracking only. The experiments show that, even being trained on synthetic data, the proposed system performs well on real-world drone images with complex background. The USC drone detection and tracking dataset with user labeled bounding boxes is available to the public.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3371 ◽  
Author(s):  
Hossain ◽  
Lee

In recent years, demand has been increasing for target detection and tracking from aerial imagery via drones using onboard powered sensors and devices. We propose a very effective method for this application based on a deep learning framework. A state-of-the-art embedded hardware system empowers small flying robots to carry out the real-time onboard computation necessary for object tracking. Two types of embedded modules were developed: one was designed using a Jetson TX or AGX Xavier, and the other was based on an Intel Neural Compute Stick. These are suitable for real-time onboard computing power on small flying drones with limited space. A comparative analysis of current state-of-the-art deep learning-based multi-object detection algorithms was carried out utilizing the designated GPU-based embedded computing modules to obtain detailed metric data about frame rates, as well as the computation power. We also introduce an effective target tracking approach for moving objects. The algorithm for tracking moving objects is based on the extension of simple online and real-time tracking. It was developed by integrating a deep learning-based association metric approach with simple online and real-time tracking (Deep SORT), which uses a hypothesis tracking methodology with Kalman filtering and a deep learning-based association metric. In addition, a guidance system that tracks the target position using a GPU-based algorithm is introduced. Finally, we demonstrate the effectiveness of the proposed algorithms by real-time experiments with a small multi-rotor drone.


Sign in / Sign up

Export Citation Format

Share Document