DETECTION AND SEGMENTATION OF ENDOSCOPIC ARTEFACTS AND DISEASES USING DEEP ARCHITECTURES
ABSTRACTWe describe in this paper our deep learning-based approach for the EndoCV2020 challenge, which aims to detect and segment either artefacts or diseases in endoscopic images. For the detection task, we propose to train and optimize EfficientDet—a state-of-the-art detector—with different EfficientNet backbones using Focal loss. By ensembling multiple detectors, we obtain a mean average precision (mAP) of 0.2524 on EDD2020 and 0.2202 on EAD2020. For the segmentation task, two different architectures are proposed: UNet with EfficientNet-B3 encoder and Feature Pyramid Network (FPN) with dilated ResNet-50 encoder. Each of them is trained with an auxiliary classification branch. Our model ensemble reports an sscore of 0.5972 on EAD2020 and 0.701 on EDD2020, which were among the top submitters of both challenges.