scholarly journals DETECTION AND SEGMENTATION OF ENDOSCOPIC ARTEFACTS AND DISEASES USING DEEP ARCHITECTURES

Author(s):  
Nhan T. Nguyen ◽  
Dat Q. Tran ◽  
Dung B. Nguyen

ABSTRACTWe describe in this paper our deep learning-based approach for the EndoCV2020 challenge, which aims to detect and segment either artefacts or diseases in endoscopic images. For the detection task, we propose to train and optimize EfficientDet—a state-of-the-art detector—with different EfficientNet backbones using Focal loss. By ensembling multiple detectors, we obtain a mean average precision (mAP) of 0.2524 on EDD2020 and 0.2202 on EAD2020. For the segmentation task, two different architectures are proposed: UNet with EfficientNet-B3 encoder and Feature Pyramid Network (FPN) with dilated ResNet-50 encoder. Each of them is trained with an auxiliary classification branch. Our model ensemble reports an sscore of 0.5972 on EAD2020 and 0.701 on EDD2020, which were among the top submitters of both challenges.


Mekatronika ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 55-61
Author(s):  
Venketaramana Balachandran ◽  
Muhammad Nur Aiman Shapiee ◽  
Ahmad Fakhri Ab. Nasir ◽  
Mohd Azraai Mohd Razman ◽  
Anwar P.P. Abdul Majeed

Human detection and tracking have been progressively demanded in various industries. The concern over human safety has inhibited the deployment of advanced and collaborative robotics, mainly attributed to the dimensionality limitation of present safety sensing. This study entails developing a deep learning-based human presence detector for deployment in smart factory environments to overcome dimensionality limitations. The objective is to develop a suitable human presence detector based on state-of-the-art YOLO variation to achieve real-time detection with high inference accuracy for feasible deployment at TT Vision Holdings Berhad. It will cover the fundamentals of modern deep learning based object detectors and the methods to accomplish the human presence detection task. The YOLO family of object detectors have truly revolutionized the Computer Vision and object detection industry and have continuously evolved since its development. At present, the most recent variation of YOLO includes YOLOv4 and YOLOv4 - Tiny. These models are acquired and pre-evaluated on the public CrowdHuman benchmark dataset. These algorithms mentioned are pre-trained on the CrowdHuman models and benchmarked at the preliminary stage. YOLOv4 and YOLOv4 – Tiny are trained on the CrowdHuman dataset for 4000 iterations and achieved a mean Average Precision of 78.21% at 25FPS and 55.59% 80FPS, respectively. The models are further fine-tuned on a  Custom CCTV dataset and achieved significant precision improvements up to 88.08% at 25 FPS and 77.70% at 80FPS, respectively. The final evaluation justified YOLOv4 as the most feasible model for deployment.  



Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1451
Author(s):  
Muhammad Hammad Saleem ◽  
Sapna Khanchi ◽  
Johan Potgieter ◽  
Khalid Mahmood Arif

The identification of plant disease is an imperative part of crop monitoring systems. Computer vision and deep learning (DL) techniques have been proven to be state-of-the-art to address various agricultural problems. This research performed the complex tasks of localization and classification of the disease in plant leaves. In this regard, three DL meta-architectures including the Single Shot MultiBox Detector (SSD), Faster Region-based Convolutional Neural Network (RCNN), and Region-based Fully Convolutional Networks (RFCN) were applied by using the TensorFlow object detection framework. All the DL models were trained/tested on a controlled environment dataset to recognize the disease in plant species. Moreover, an improvement in the mean average precision of the best-obtained deep learning architecture was attempted through different state-of-the-art deep learning optimizers. The SSD model trained with an Adam optimizer exhibited the highest mean average precision (mAP) of 73.07%. The successful identification of 26 different types of defected and 12 types of healthy leaves in a single framework proved the novelty of the work. In the future, the proposed detection methodology can also be adopted for other agricultural applications. Moreover, the generated weights can be reused for future real-time detection of plant disease in a controlled/uncontrolled environment.



Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1623
Author(s):  
Ningwei Wang ◽  
Yaze Li ◽  
Hongzhe Liu

Neural networks have enabled state-of-the-art approaches to achieve incredible results on computer vision tasks such as object detection. However, previous works have tried to improve the performance in various object detection necks but have failed to extract features efficiently. To solve the insufficient features of objects, this work introduces some of the most advanced and representative network models based on the Faster R-CNN architecture, such as Libra R-CNN, Grid R-CNN, guided anchoring, and GRoIE. We observed the performance of Neighbour Feature Pyramid Network (NFPN) fusion, ResNet Region of Interest Feature Extraction (ResRoIE) and the Recursive Feature Pyramid (RFP) architecture at different scales of precision when these components were used in place of the corresponding original members in various networks obtained on the MS COCO dataset. Compared to the experimental results after replacing the neck and RoIE parts of these models with our Reinforced Neighbour Feature Fusion (RNFF) model, the average precision (AP) is increased by 3.2 percentage points concerning the performance of the baseline network.



Author(s):  
M A Isayev ◽  
D A Savelyev

The comparison of different convolutional neural networks which are the core of the most actual solutions in the computer vision area is considers in hhe paper. The study includes benchmarks of this state-of-the-art solutions by some criteria, such as mAP (mean average precision), FPS (frames per seconds), for the possibility of real-time usability. It is concluded on the best convolutional neural network model and deep learning methods that were used at particular solution.



2021 ◽  
Vol 13 (24) ◽  
pp. 5100
Author(s):  
Teerapong Panboonyuen ◽  
Kulsawasd Jitkajornwanich ◽  
Siam Lawawirojwong ◽  
Panu Srestasathiern ◽  
Peerapon Vateekul

Transformers have demonstrated remarkable accomplishments in several natural language processing (NLP) tasks as well as image processing tasks. Herein, we present a deep-learning (DL) model that is capable of improving the semantic segmentation network in two ways. First, utilizing the pre-training Swin Transformer (SwinTF) under Vision Transformer (ViT) as a backbone, the model weights downstream tasks by joining task layers upon the pretrained encoder. Secondly, decoder designs are applied to our DL network with three decoder designs, U-Net, pyramid scene parsing (PSP) network, and feature pyramid network (FPN), to perform pixel-level segmentation. The results are compared with other image labeling state of the art (SOTA) methods, such as global convolutional network (GCN) and ViT. Extensive experiments show that our Swin Transformer (SwinTF) with decoder designs reached a new state of the art on the Thailand Isan Landsat-8 corpus (89.8% F1 score), Thailand North Landsat-8 corpus (63.12% F1 score), and competitive results on ISPRS Vaihingen. Moreover, both our best-proposed methods (SwinTF-PSP and SwinTF-FPN) even outperformed SwinTF with supervised pre-training ViT on the ImageNet-1K in the Thailand, Landsat-8, and ISPRS Vaihingen corpora.



Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 283
Author(s):  
Xiaoyuan Yu ◽  
Suigu Tang ◽  
Chak Fong Cheang ◽  
Hon Ho Yu ◽  
I Cheong Choi

The automatic analysis of endoscopic images to assist endoscopists in accurately identifying the types and locations of esophageal lesions remains a challenge. In this paper, we propose a novel multi-task deep learning model for automatic diagnosis, which does not simply replace the role of endoscopists in decision making, because endoscopists are expected to correct the false results predicted by the diagnosis system if more supporting information is provided. In order to help endoscopists improve the diagnosis accuracy in identifying the types of lesions, an image retrieval module is added in the classification task to provide an additional confidence level of the predicted types of esophageal lesions. In addition, a mutual attention module is added in the segmentation task to improve its performance in determining the locations of esophageal lesions. The proposed model is evaluated and compared with other deep learning models using a dataset of 1003 endoscopic images, including 290 esophageal cancer, 473 esophagitis, and 240 normal. The experimental results show the promising performance of our model with a high accuracy of 96.76% for the classification and a Dice coefficient of 82.47% for the segmentation. Consequently, the proposed multi-task deep learning model can be an effective tool to help endoscopists in judging esophageal lesions.



2019 ◽  
Vol 27 (2) ◽  
pp. 194-201 ◽  
Author(s):  
Dina Demner-Fushman ◽  
Yassine Mrabet ◽  
Asma Ben Abacha

Abstract Objective Consumers increasingly turn to the internet in search of health-related information; and they want their questions answered with short and precise passages, rather than needing to analyze lists of relevant documents returned by search engines and reading each document to find an answer. We aim to answer consumer health questions with information from reliable sources. Materials and Methods We combine knowledge-based, traditional machine and deep learning approaches to understand consumers’ questions and select the best answers from consumer-oriented sources. We evaluate the end-to-end system and its components on simple questions generated in a pilot development of MedlinePlus Alexa skill, as well as the short and long real-life questions submitted to the National Library of Medicine by consumers. Results Our system achieves 78.7% mean average precision and 87.9% mean reciprocal rank on simple Alexa questions, and 44.5% mean average precision and 51.6% mean reciprocal rank on real-life questions submitted by National Library of Medicine consumers. Discussion The ensemble of deep learning, domain knowledge, and traditional approaches recognizes question type and focus well in the simple questions, but it leaves room for improvement on the real-life consumers’ questions. Information retrieval approaches alone are sufficient for finding answers to simple Alexa questions. Answering real-life questions, however, benefits from a combination of information retrieval and inference approaches. Conclusion A pilot practical implementation of research needed to help consumers find reliable answers to their health-related questions demonstrates that for most questions the reliable answers exist and can be found automatically with acceptable accuracy.



Author(s):  
Thomas Haugland Johansen ◽  
Steffen Aagaard Sørensen ◽  
Kajsa Møllersen ◽  
Fred Godtliebsen

Foraminifera are single-celled marine organisms that construct shells that remain as fossils in the marine sediments. Classifying and counting these fossils are important in e.g. paleo-oceanographic and -climatological research. However, the identification and counting process has been performed manually since the 1800s and is laborious and time-consuming. In this work, we present a deep learning-based instance segmentation model for classifying, detecting, and segmenting microscopic foraminifera. Our model is based on the Mask R-CNN architecture, using model weight parameters that have learned on the COCO detection dataset. We use a fine-tuning approach to adapt the parameters on a novel object detection dataset of more than 7000 microscopic foraminifera and sediment grains. The model achieves a (COCO-style) average precision of 0.78±0.00 on the classification and detection task, and 0.80±0.00 on the segmentation task. When the model is evaluated without challenging sediment grain images, the average precision for both tasks increases to 0.84±0.00 and 0.86±0.00, respectively. Prediction results are analyzed both quantitatively and qualitatively and discussed. Based on our findings we propose several directions for future work, and conclude that our proposed model is an important step towards automating the identification and counting of microscopic foraminifera.



2021 ◽  
Author(s):  
Amandip Sangha ◽  
Mohammad Rizvi

AbstractImportanceState-of-the art performance is achieved with a deep learning object detection model for acne detection. There is little current research on object detection in dermatology and acne in particular. As such, this work is early in this field and achieves state of the art performance.ObjectiveTrain an object detection model on a publicly available data set of acne photos.Design, Setting, and ParticipantsA deep learning model is trained with cross validation on a data set of facial acne photos.Main Outcomes and MeasuresObject detection models for detecting acne for single-class (acne) and multi-class (four severity levels). We train and evaluate the models using standard metrics such as mean average precision (mAP). Then we manually evaluate the model predictions on the test set, and calculate accuracy in terms of precision, recall, F1, true and false positive and negative detections.ResultsWe achieve state-of-the art mean average precision [email protected] value of 37.97 for the single class acne detection task, and 26.50 for the 4-class acne detection task. Moreover, our manual evaluation shows that the single class detection model performs well on the validation set, achieving true positive 93.59 %, precision 96.45 % and recall 94.73 %.Conclusions and RelevanceWe are able to train a high-accuracy acne detection model using only a small publicly available data set of facial acne. Transfer learning on the pre-trained deep learning model yields good accuracy and high degree of transferability to patient submitted photographs. We also note that the training of standard architecture object detection models has given significantly better accuracy than more intricate and bespoke neural network architectures in the existing research literature.Key PointsQuestionCan deep learning-based acne detection models trained on a small data set of publicly available photos of patients with acne achieve high prediction accuracy?FindingsWe find that it is possible to train a reasonably good object detection model on a small, annotated data set of acne photos using standard deep learning architectures.MeaningDeep learning-based object detection models for acne detection can be a useful decision support tools for dermatologists treating acne patients in a digital clinical practice. It can prove a particularly useful tool for monitoring the time evolution of the acne disease state over prolonged time during follow-ups, as the model predictions give a quantifiable and comparable output for photographs over time. This is particularly helpful in teledermatological consultations, as a prediction model can be integrated in the patient-doctor remote communication.



Author(s):  
Robinson Jimenez-Moreno ◽  
Astrid Rubiano Fonseca ◽  
Jose Luis Ramirez

This paper exposes the use of recent deep learning techniques in the state of the art, little addressed in robotic applications, where a new algorithm based on Faster R-CNN and CNN regression is exposed. The machine vision systems implemented, tend to require multiple stages to locate an object and allow a robot to take it, increasing the noise in the system and the processing times. The convolutional networks based on regions allow one to solve this problem, it is used for it two convolutional architectures, one for classification and location of three types of objects and one to determine the grip angle for a robotic gripper. Under the establish virtual environment, the grip algorithm works up to 5 frames per second with a 100% object classification, and with the implementation of the Faster R-CNN, it allows obtain 100% accuracy in the classifications of the test database, and over a 97% of average precision locating the generated boxes in each element, gripping successfully the objects.



Sign in / Sign up

Export Citation Format

Share Document