Protein turnover in different types of skeletal muscle during experimental hyperthyroidism in rats

1985 ◽  
Vol 109 (1) ◽  
pp. 90-95 ◽  
Author(s):  
Ulf Angerås ◽  
Per-Olof Hasseigren

Abstract. Exeprimental hyperthyroidism was induced in rats by daily ip injection of triiodothyronine (T3; 100 μg/100 g body weight) during 3 or 10 days. Protein synthesis and degradation were measured in incubated soleus and extensor digitorum longus (EDL) muscles by determining rate of tyrosine incorporation into protein and release of tyrosine to the incubation medium respectively. Protein synthesis was unaffected by T3 administration during 3 or 10 days. Protein breakdown was significantly increased in soleus but unchanged in EDL in the 3-days experiment. Following administration of T3 for 10 days proteolysis was increased in both muslces. Weight of the soleus muscle was reduced after T3 for 3 days. After 10 days weight and protein content were reduced in both muscles. The study demonstrated that reduced muscle protein content following administration of T3 was the result of increased proteolysis, not decreased protein synthesis. The results further indicate that slow muscle (soleus) is more sensitive to the effects of thyroid hormone than fast muscle (EDL).

1982 ◽  
Vol 204 (1) ◽  
pp. 257-264 ◽  
Author(s):  
S E M Lewis ◽  
P Anderson ◽  
D F Goldspink

Several experimental procedures were used to increase the intracellular concentration of Ca2+ and determine its effects on protein turnover in isolated extensor digitorum longus and soleus muscle. These methods included the use of ionophore A23187, caffeine, dibucaine, thymol and procaine, all agents known to induce the release of calcium by acting either on the sarcolemma and/or on the sarcoplasmic reticulum. Another approach involved varying the external concentration of Ca2+ in the media in which the muscles were incubated. The changes in muscle Ca2+ concentrations after exposure to the various calcium-releasing agents were in keeping with accepted modes of action of these agents on muscle membranes. The findings suggest that increasing the sarcoplasmic concentration of Ca2+ inhibits protein synthesis and enhances protein breakdown. These catabolic effects of Ca2+ are compared with the changes induced in muscle protein turnover after exposure to insulin or cyclic nucleotides, and in myopathic muscle and situations of work overload. Attention is also drawn to some of the difficulties involved in definitively implicating Ca2+ as a factor involved in the normal regulation of protein turnover.


2020 ◽  
Vol 319 (2) ◽  
pp. C419-C431
Author(s):  
Douglas W. Van Pelt ◽  
Ivan J. Vechetti ◽  
Marcus M. Lawrence ◽  
Kathryn L. Van Pelt ◽  
Parth Patel ◽  
...  

Small noncoding microRNAs (miRNAs) are important regulators of skeletal muscle size, and circulating miRNAs within extracellular vesicles (EVs) may contribute to atrophy and its associated systemic effects. The purpose of this study was to understand how muscle atrophy and regrowth alter in vivo serum EV miRNA content. We also associated changes in serum EV miRNA with protein synthesis, protein degradation, and miRNA within muscle, kidney, and liver. We subjected adult (10 mo) F344/BN rats to three conditions: weight bearing (WB), hindlimb suspension (HS) for 7 days to induce muscle atrophy, and HS for 7 days followed by 7 days of reloading (HSR). Microarray analysis of EV miRNA content showed that the overall changes in serum EV miRNA were predicted to target major anabolic, catabolic, and mechanosensitive pathways. MiR-203a-3p was the only miRNA demonstrating substantial differences in HS EVs compared with WB. There was a limited association of EV miRNA content to the corresponding miRNA content within the muscle, kidney, or liver. Stepwise linear regression demonstrated that EV miR-203a-3p was correlated with muscle mass and muscle protein synthesis and degradation across all conditions. Finally, EV miR-203a-3p expression was significantly decreased in human subjects who underwent unilateral lower limb suspension (ULLS) to induce muscle atrophy. Altogether, we show that serum EV miR-203a-3p expression is related to skeletal muscle protein turnover and atrophy. We suggest that serum EV miR-203a-3p content may be a useful biomarker and future work should investigate whether serum EV miR-203a-3p content is mechanistically linked to protein synthesis and degradation.


1986 ◽  
Vol 240 (3) ◽  
pp. 651-657 ◽  
Author(s):  
T A Davis ◽  
I E Karl

To determine whether the enhanced insulin-sensitivity of glucose metabolism in muscle after acute exercise also extends to protein metabolism, untrained and exercise-trained rats were subjected to an acute bout of exercise, and the responses of protein synthesis and degradation to insulin were measured in epitrochlearis muscles in vitro. Acute exercise of both untrained and trained rats decreased protein synthesis in muscle in the absence or presence of insulin, but protein degradation was not altered. Exercise training alone had no effect on protein synthesis or degradation in muscle in the absence or presence of insulin. Acute exercise or training alone enhanced the sensitivities of both protein synthesis and degradation to insulin, but the enhanced insulin-sensitivities from training alone were not additive to those after acute exercise. These results indicate that: a decrease in protein synthesis is the primary change in muscle protein turnover after acute exercise and is not altered by prior exercise training, and the enhanced insulin-sensitivities of metabolism of both glucose and protein after either acute exercise or training suggest post-binding receptor events.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Michela Saio ◽  
Antonella Sofia ◽  
Rodolfo Russo ◽  
Leda Cipriani ◽  
Giacomo Garibotto ◽  
...  

Abstract Background and Aims Skeletal muscle is a highly adaptive tissue, however even small imbalances between protein synthesis and degradation can lead to substantial protein loss. Althought proteolysis plays a major role in the development of cachexia in CKD (chronic kidney disease), the responses of muscle protein metabolism to malnutrition had not been completely elucidated. We evaluated retrospectively the results of kinetic studies of protein turnover estimated by the forearm perfusion method associated with H2phenylalanine kinetic, obtained in CKD patients and controls in the last 25 years. Method We analyzed 59 forearm H2phenylalanine kinetic studies obtained in 14 controls (C) (M 11, F 3) and 45 patients with CKD, of whom 15 (M 10, F 5) were on conservative treatment (CKD stage IV-V), 16 (M 14, F 2) under maintenance hemodialysis (HD), 14 (M 12, F 2) in peritoneal dialysis (DP); all subjects were on non-restricted protein/calorie (0.8-1.1 g/kg and 28-32 kcal/kg, respectively) diets. Ten (M 9, F 1) HD patients had Protein Energy Wasting. Acidosis was corrected in all patients (HCO3 24.2±1.9 mmol/L) and studies were performed in the post-absorptive overnight fasted state at rest. Results Overall, Muscle protein synthesis and degradation were similar (p=NS) in patients and controls. Protein net balance was reduced in patients with PD and those with CKD Stage IV-V (p <0.003 - p <0.014) indicating a reduced catabolic state and nitrogen conservation. However PEW HD patients showed reduced rates of protein synthesis and degradation (p <0.048 and p <0.04 respectively). In addition the efficiency of muscle protein turnover, a parameter expressing muscle's ability to reuse amino acids derived from degradation into protein synthesis, was significantly reduced in HD PEW patients vs. controls (55.5 vs. 61.2 %, p <0.018, respectively) and vs. not malnourished patients in conservative treatment (70.1 % p <0.0025) or in PD (74.6 % p <0.005). Conclusion In CKD patients, in absence of acidosis, muscle is able to increase the efficiency of protein metabolism for the maintenance of nitrogen balance. However, in PEW patients, combined alterations of protein synthesis and degradation proceed together to a reduced efficiency of amino acids recycled into protein synthesis and contribute to maintaining wasting. These data also suggest that calorie/protein requirements of CKD patients with PEW may be higher than currently theorized.


Biomolecules ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 229 ◽  
Author(s):  
Natália Angelo da Silva Miyaguti ◽  
Sarah Christine Pereira de Oliveira ◽  
Maria Cristina Cintra Gomes-Marcondes

Cachexia syndrome can affect cancer patients and new prevention strategies are required. Maternal nutritional supplementation can modify metabolic programming in the offspring, which lasts until adulthood. This could be a good approach against diseases such as cancer. A 3% leucine-rich diet treatment improved muscle protein turnover by modifying the mTOR and proteolytic pathways, thus we analysed whether maternal supplementation could ameliorate muscle protein turnover in adult offspring tumour-bearing rats. Pregnant Wistar rats received a control diet or 3% leucine-rich diet during pregnancy/lactation, and their weaned male offspring received a control diet until adulthood when they were distributed into following groups (n = 7–8 per group): C, Control; W, tumour-bearing; L, without tumour with a maternal leucine-rich diet; and WL, tumour-bearing with a maternal leucine-rich diet. Protein synthesis and degradation were assessed in the gastrocnemius muscle, focusing on the mTOR pathway, which was extensively altered in W group. However, the WL adult offspring showed no decrease in muscle weight, higher food intake, ameliorated muscle turnover, activated mTOR and p70S6K, and maintained muscle cathepsin H and calpain activities. Maternal leucine nutritional supplementation could be a positive strategy to improve muscle protein balance in cancer cachexia-induced muscle damage in adult offspring rats.


1983 ◽  
Vol 212 (3) ◽  
pp. 649-653 ◽  
Author(s):  
A S Clark ◽  
W E Mitch

Rates of muscle protein synthesis and degradation measured in the perfused hindquarter were compared with those in incubated epitrochlearis muscles. With fed or starved mature rats, results without insulin treatment were identical. With insulin treatment, protein synthesis in perfused hindquarters was greater, though protein degradation was the same. Thus rates of muscle protein degradation estimated by these two methods in vitro correspond closely.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Aline Ricarda Dörrbaum ◽  
Beatriz Alvarez-Castelao ◽  
Belquis Nassim-Assir ◽  
Julian D Langer ◽  
Erin M Schuman

Protein turnover, the net result of protein synthesis and degradation, enables cells to remodel their proteomes in response to internal and external cues. Previously, we analyzed protein turnover rates in cultured brain cells under basal neuronal activity and found that protein turnover is influenced by subcellular localization, protein function, complex association, cell type of origin, and by the cellular environment (Dörrbaum et al., 2018). Here, we advanced our experimental approach to quantify changes in protein synthesis and degradation, as well as the resulting changes in protein turnover or abundance in rat primary hippocampal cultures during homeostatic scaling. Our data demonstrate that a large fraction of the neuronal proteome shows changes in protein synthesis and/or degradation during homeostatic up- and down-scaling. More than half of the quantified synaptic proteins were regulated, including pre- as well as postsynaptic proteins with diverse molecular functions.


Sign in / Sign up

Export Citation Format

Share Document