scholarly journals Maternal Leucine-Rich Diet Minimises Muscle Mass Loss in Tumour-bearing Adult Rat Offspring by Improving the Balance of Muscle Protein Synthesis and Degradation

Biomolecules ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 229 ◽  
Author(s):  
Natália Angelo da Silva Miyaguti ◽  
Sarah Christine Pereira de Oliveira ◽  
Maria Cristina Cintra Gomes-Marcondes

Cachexia syndrome can affect cancer patients and new prevention strategies are required. Maternal nutritional supplementation can modify metabolic programming in the offspring, which lasts until adulthood. This could be a good approach against diseases such as cancer. A 3% leucine-rich diet treatment improved muscle protein turnover by modifying the mTOR and proteolytic pathways, thus we analysed whether maternal supplementation could ameliorate muscle protein turnover in adult offspring tumour-bearing rats. Pregnant Wistar rats received a control diet or 3% leucine-rich diet during pregnancy/lactation, and their weaned male offspring received a control diet until adulthood when they were distributed into following groups (n = 7–8 per group): C, Control; W, tumour-bearing; L, without tumour with a maternal leucine-rich diet; and WL, tumour-bearing with a maternal leucine-rich diet. Protein synthesis and degradation were assessed in the gastrocnemius muscle, focusing on the mTOR pathway, which was extensively altered in W group. However, the WL adult offspring showed no decrease in muscle weight, higher food intake, ameliorated muscle turnover, activated mTOR and p70S6K, and maintained muscle cathepsin H and calpain activities. Maternal leucine nutritional supplementation could be a positive strategy to improve muscle protein balance in cancer cachexia-induced muscle damage in adult offspring rats.

1986 ◽  
Vol 240 (3) ◽  
pp. 651-657 ◽  
Author(s):  
T A Davis ◽  
I E Karl

To determine whether the enhanced insulin-sensitivity of glucose metabolism in muscle after acute exercise also extends to protein metabolism, untrained and exercise-trained rats were subjected to an acute bout of exercise, and the responses of protein synthesis and degradation to insulin were measured in epitrochlearis muscles in vitro. Acute exercise of both untrained and trained rats decreased protein synthesis in muscle in the absence or presence of insulin, but protein degradation was not altered. Exercise training alone had no effect on protein synthesis or degradation in muscle in the absence or presence of insulin. Acute exercise or training alone enhanced the sensitivities of both protein synthesis and degradation to insulin, but the enhanced insulin-sensitivities from training alone were not additive to those after acute exercise. These results indicate that: a decrease in protein synthesis is the primary change in muscle protein turnover after acute exercise and is not altered by prior exercise training, and the enhanced insulin-sensitivities of metabolism of both glucose and protein after either acute exercise or training suggest post-binding receptor events.


2020 ◽  
Vol 319 (2) ◽  
pp. C419-C431
Author(s):  
Douglas W. Van Pelt ◽  
Ivan J. Vechetti ◽  
Marcus M. Lawrence ◽  
Kathryn L. Van Pelt ◽  
Parth Patel ◽  
...  

Small noncoding microRNAs (miRNAs) are important regulators of skeletal muscle size, and circulating miRNAs within extracellular vesicles (EVs) may contribute to atrophy and its associated systemic effects. The purpose of this study was to understand how muscle atrophy and regrowth alter in vivo serum EV miRNA content. We also associated changes in serum EV miRNA with protein synthesis, protein degradation, and miRNA within muscle, kidney, and liver. We subjected adult (10 mo) F344/BN rats to three conditions: weight bearing (WB), hindlimb suspension (HS) for 7 days to induce muscle atrophy, and HS for 7 days followed by 7 days of reloading (HSR). Microarray analysis of EV miRNA content showed that the overall changes in serum EV miRNA were predicted to target major anabolic, catabolic, and mechanosensitive pathways. MiR-203a-3p was the only miRNA demonstrating substantial differences in HS EVs compared with WB. There was a limited association of EV miRNA content to the corresponding miRNA content within the muscle, kidney, or liver. Stepwise linear regression demonstrated that EV miR-203a-3p was correlated with muscle mass and muscle protein synthesis and degradation across all conditions. Finally, EV miR-203a-3p expression was significantly decreased in human subjects who underwent unilateral lower limb suspension (ULLS) to induce muscle atrophy. Altogether, we show that serum EV miR-203a-3p expression is related to skeletal muscle protein turnover and atrophy. We suggest that serum EV miR-203a-3p content may be a useful biomarker and future work should investigate whether serum EV miR-203a-3p content is mechanistically linked to protein synthesis and degradation.


1995 ◽  
Vol 268 (3) ◽  
pp. E514-E520 ◽  
Author(s):  
G. Biolo ◽  
S. P. Maggi ◽  
B. D. Williams ◽  
K. D. Tipton ◽  
R. R. Wolfe

The rates of protein synthesis and degradation and of amino acid transport were determined in the leg muscle of untrained postabsorptive normal volunteers at rest and approximately 3 h after a resistance exercise routine. The methodology involved use of stable isotopic tracers of amino acids, arteriovenous catheterization of the femoral vessels, and biopsy of the vastus lateralis muscle. During postexercise recovery, the rate of intramuscular phenylalanine utilization for protein synthesis increased above the basal value by 108 +/- 18%, whereas the rate of release from proteolysis increased by 51 +/- 17%. Muscle protein balance improved (P < 0.05) after exercise but did not become positive (from -15 +/- 12 to -6 +/- 3 nmol phenylalanine.min-1.100 ml leg volume-1). After exercise, rates of inward transport of leucine, lysine, and alanine increased (P < 0.05) above the basal state from 132 +/- 16 to 208 +/- 29, from 122 +/- 8 to 260 +/- 8, and from 384 +/- 71 to 602 +/- 89 nmol.min-1.100 ml leg-1, respectively. Transport of phenylalanine did not change significantly. These results indicate that, during recovery after resistance exercise, muscle protein turnover is increased because of an acceleration of synthesis and degradation. A postexercise acceleration of amino acid transport may contribute to the relatively greater stimulation of protein synthesis.


1985 ◽  
Vol 109 (1) ◽  
pp. 90-95 ◽  
Author(s):  
Ulf Angerås ◽  
Per-Olof Hasseigren

Abstract. Exeprimental hyperthyroidism was induced in rats by daily ip injection of triiodothyronine (T3; 100 μg/100 g body weight) during 3 or 10 days. Protein synthesis and degradation were measured in incubated soleus and extensor digitorum longus (EDL) muscles by determining rate of tyrosine incorporation into protein and release of tyrosine to the incubation medium respectively. Protein synthesis was unaffected by T3 administration during 3 or 10 days. Protein breakdown was significantly increased in soleus but unchanged in EDL in the 3-days experiment. Following administration of T3 for 10 days proteolysis was increased in both muslces. Weight of the soleus muscle was reduced after T3 for 3 days. After 10 days weight and protein content were reduced in both muscles. The study demonstrated that reduced muscle protein content following administration of T3 was the result of increased proteolysis, not decreased protein synthesis. The results further indicate that slow muscle (soleus) is more sensitive to the effects of thyroid hormone than fast muscle (EDL).


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Michela Saio ◽  
Antonella Sofia ◽  
Rodolfo Russo ◽  
Leda Cipriani ◽  
Giacomo Garibotto ◽  
...  

Abstract Background and Aims Skeletal muscle is a highly adaptive tissue, however even small imbalances between protein synthesis and degradation can lead to substantial protein loss. Althought proteolysis plays a major role in the development of cachexia in CKD (chronic kidney disease), the responses of muscle protein metabolism to malnutrition had not been completely elucidated. We evaluated retrospectively the results of kinetic studies of protein turnover estimated by the forearm perfusion method associated with H2phenylalanine kinetic, obtained in CKD patients and controls in the last 25 years. Method We analyzed 59 forearm H2phenylalanine kinetic studies obtained in 14 controls (C) (M 11, F 3) and 45 patients with CKD, of whom 15 (M 10, F 5) were on conservative treatment (CKD stage IV-V), 16 (M 14, F 2) under maintenance hemodialysis (HD), 14 (M 12, F 2) in peritoneal dialysis (DP); all subjects were on non-restricted protein/calorie (0.8-1.1 g/kg and 28-32 kcal/kg, respectively) diets. Ten (M 9, F 1) HD patients had Protein Energy Wasting. Acidosis was corrected in all patients (HCO3 24.2±1.9 mmol/L) and studies were performed in the post-absorptive overnight fasted state at rest. Results Overall, Muscle protein synthesis and degradation were similar (p=NS) in patients and controls. Protein net balance was reduced in patients with PD and those with CKD Stage IV-V (p &lt;0.003 - p &lt;0.014) indicating a reduced catabolic state and nitrogen conservation. However PEW HD patients showed reduced rates of protein synthesis and degradation (p &lt;0.048 and p &lt;0.04 respectively). In addition the efficiency of muscle protein turnover, a parameter expressing muscle's ability to reuse amino acids derived from degradation into protein synthesis, was significantly reduced in HD PEW patients vs. controls (55.5 vs. 61.2 %, p &lt;0.018, respectively) and vs. not malnourished patients in conservative treatment (70.1 % p &lt;0.0025) or in PD (74.6 % p &lt;0.005). Conclusion In CKD patients, in absence of acidosis, muscle is able to increase the efficiency of protein metabolism for the maintenance of nitrogen balance. However, in PEW patients, combined alterations of protein synthesis and degradation proceed together to a reduced efficiency of amino acids recycled into protein synthesis and contribute to maintaining wasting. These data also suggest that calorie/protein requirements of CKD patients with PEW may be higher than currently theorized.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2788
Author(s):  
Qian Xiao ◽  
Yi-Hsiu Chen ◽  
Satwika Arya Pratama ◽  
Ya-Ling Chen ◽  
Hitoshi Shirakawa ◽  
...  

The purpose of this research was to investigate the prophylactic effects of glutamine on muscle protein synthesis and degradation in rats with ethanol-induced liver injury. For the first 2 weeks, Wistar rats were divided into two groups and fed a control (n = 16) or glutamine-containing diet (n = 24). For the following 6 weeks, rats fed the control diet were further divided into two groups (n = 8 per group) according to whether their diet contained no ethanol (CC) or did contain ethanol (CE). Rats fed the glutamine-containing diet were also further divided into three groups (n = 8 per group), including a GG group (glutamine-containing diet without ethanol), GE group (control diet with ethanol), and GEG group (glutamine-containing diet with ethanol). After 6 weeks, results showed that hepatic fatty change, inflammation, altered liver function, and hyperammonemia had occurred in the CE group, but these were attenuated in the GE and GEG groups. Elevated intestinal permeability and a higher plasma endotoxin level were observed in the CE group, but both were lower in the GE and GEG groups. The level of a protein synthesis marker (p70S6K) was reduced in the CE group but was higher in both the GE and GEG groups. In conclusion, glutamine supplementation might elevate muscle protein synthesis by improving intestinal health and ameliorating liver damage in rats with chronic ethanol intake.


2000 ◽  
Vol 278 (3) ◽  
pp. R705-R711 ◽  
Author(s):  
T. A. McAllister ◽  
J. R. Thompson ◽  
S. E. Samuels

The effect of long-term cold exposure on skeletal and cardiac muscle protein turnover was investigated in young growing animals. Two groups of 36 male 28-day-old rats were maintained at either 5°C (cold) or 25°C (control). Rates of protein synthesis and degradation were measured in vivo on days 5, 10, 15, and 20. Protein mass by day 20 was ∼28% lower in skeletal muscle (gastrocnemius and soleus) and ∼24% higher in heart in cold compared with control rats ( P < 0.05). In skeletal muscle, the fractional rates of protein synthesis ( k syn) and degradation ( k deg) were not significantly different between cold and control rats, although k syn was lower (approximately −26%) in cold rats on day 5; consequent to the lower protein mass, the absolute rates of protein synthesis (approximately −21%; P < 0.05) and degradation (approximately −13%; P < 0.1) were lower in cold compared with control rats. In heart, overall, k syn(approximately +12%; P < 0.1) and k deg(approximately +22%; P < 0.05) were higher in cold compared with control rats; consequently, the absolute rates of synthesis (approximately +44%) and degradation (approximately +54%) were higher in cold compared with control rats ( P < 0.05). Plasma triiodothyronine concentration was higher ( P < 0.05) in cold compared with control rats. These data indicate that long-term cold acclimation in skeletal muscle is associated with the establishment of a new homeostasis in protein turnover with decreased protein mass and normal fractional rates of protein turnover. In heart, unlike skeletal muscle, rates of protein turnover did not appear to immediately return to normal as increased rates of protein turnover were observed beyond day 5. These data also indicate that increased rates of protein turnover in skeletal muscle are unlikely to contribute to increased metabolic heat production during cold acclimation.


1981 ◽  
Vol 194 (3) ◽  
pp. 811-819 ◽  
Author(s):  
M L MacDonald ◽  
R W Swick

Rates of growth and protein turnover in the breast muscle of young chicks were measured in order to assess the roles of protein synthesis and degradation in the regulation of muscle mass. Rates of protein synthesis were measured in vivo by injecting a massive dose of L-[1-14C]valine, and rates of protein degradation were estimated as the difference between the synthesis rate and the growth rate of muscle protein. In chicks fed on a control diet for up to 7 weeks of age, the fractional rate of synthesis decreased from 1 to 2 weeks of age and then changed insignificantly from 2 to 7 weeks of age, whereas DNA activity was constant for 1 to 7 weeks. When 4-week-old chicks were fed on a protein-free diet for 17 days, the total amount of breast-muscle protein synthesized and degraded per day and the amount of protein synthesized per unit of DNA decreased. Protein was lost owing to a greater decrease in the rate of protein synthesis, as a result of the loss of RNA and a lowered RNA activity. When depleted chicks were re-fed the control diet, rapid growth was achieved by a doubling of the fractional synthesis rate by 2 days. Initially, this was a result of increased RNA activity; by 5 days, the RNA/DNA ratio also increased. There was no evidence of a decrease in the fractional degradation rate during re-feeding. These results indicate that dietary-protein depletion and repletion cause changes in breast-muscle protein mass primarily through changes in the rate of protein synthesis.


2009 ◽  
Vol 106 (6) ◽  
pp. 2026-2039 ◽  
Author(s):  
Vinod Kumar ◽  
Philip Atherton ◽  
Kenneth Smith ◽  
Michael J. Rennie

Skeletal muscle demonstrates extraordinary mutability in its responses to exercise of different modes, intensity, and duration, which must involve alterations of muscle protein turnover, both acutely and chronically. Here, we bring together information on the alterations in the rates of synthesis and degradation of human muscle protein by different types of exercise and the influences of nutrition, age, and sexual dimorphism. Where possible, we summarize the likely changes in activity of signaling proteins associated with control of protein turnover. Exercise of both the resistance and nonresistance types appears to depress muscle protein synthesis (MPS), whereas muscle protein breakdown (MPB) probably remains unchanged during exercise. However, both MPS and MPB are elevated after exercise in the fasted state, when net muscle protein balance remains negative. Positive net balance is achieved only when amino acid availability is increased, thereby raising MPS markedly. However, postexercise-increased amino acid availability is less important for inhibiting MPB than insulin, the secretion of which is stimulated most by glucose availability, without itself stimulating MPS. Exercise training appears to increase basal muscle protein turnover, with differential responses of the myofibrillar and mitochondrial protein fractions to acute exercise in the trained state. Aging reduces the responses of myofibrillar protein and anabolic signaling to resistance exercise. There appear to be few, if any, differences in the response of young women and young men to acute exercise, although there are indications that, in older women, the responses may be blunted more than in older men.


1983 ◽  
Vol 212 (3) ◽  
pp. 649-653 ◽  
Author(s):  
A S Clark ◽  
W E Mitch

Rates of muscle protein synthesis and degradation measured in the perfused hindquarter were compared with those in incubated epitrochlearis muscles. With fed or starved mature rats, results without insulin treatment were identical. With insulin treatment, protein synthesis in perfused hindquarters was greater, though protein degradation was the same. Thus rates of muscle protein degradation estimated by these two methods in vitro correspond closely.


Sign in / Sign up

Export Citation Format

Share Document