Serotonergic regulation of prolactin and growth hormone secretion in man

1985 ◽  
Vol 110 (2) ◽  
pp. 152-157 ◽  
Author(s):  
David A. Lewis ◽  
Barry M. Sherman

Abstract. Controversy still exists regarding the role of serotonin in the regulation of prolactin (Prl) and growth hormone (GH) secretion in man. We gave healthy male volunteers three oral doses (0.5, 1.0 and 1.5 mg/kg) of fenfluramine, a serotonin-releasing agent and uptake inhibitor, and a corresponding placebo. There was a significant dose-response effect of fenfluramine on Prl but not on GH levels. Following the highest dose of fenfluramine, mean Prl levels increased from 9.7 ng/ml to 42.3 ng/ml. In a separate study, subjects were pre-treated with cyproheptadine, a serotonin antagonist, before the administration of fenfluramine. Cyprohaptadine did not significantly affect basal Prl or GH levels, but it did blunt the response of Prl to fenfluramine. Cyproheptadine pretreatment did not alter plasma levels of fenfluramine. Our findings support a stimulatory role for serotonin in the regulation of Prl secretion in man. They also suggest that serotonin does not have a major influence on GH secretion in man.

1995 ◽  
Vol 144 (1) ◽  
pp. 83-90 ◽  
Author(s):  
E Magnan ◽  
L Mazzocchi ◽  
M Cataldi ◽  
V Guillaume ◽  
A Dutour ◽  
...  

Abstract The physiological role of endogenous circulating GHreleasing hormone (GHRH) and somatostatin (SRIH) on spontaneous pulsatile and neostigmine-induced secretion of GH was investigated in adult rams actively immunized against each neuropeptide. All animals developed antibodies at concentrations sufficient for immunoneutralization of GHRH and SRIH levels in hypophysial portal blood. In the anti GHRH group, plasma GH levels were very low; the amplitude of GH pulses was strikingly reduced, although their number was unchanged. No stimulation of GH release was observed after neostigmine administration. The reduction of GH secretion was associated with a decreased body weight and a significant reduction in plasma IGF-I concentration. In the antiSRIH group, no changes in basal and pulsatile GH secretion or the GH response to neostigmine were observed as compared to controls. Body weight was not significantly altered and plasma IGF-I levels were reduced in these animals. These results suggest that in sheep, circulating SRIH (in the systemic and hypophysial portal vasculature) does not play a significant role in pulsatile and neostigmine-induced secretion of GH. The mechanisms of its influence on body weight and production of IGF-I remain to be determined. Journal of Endocrinology (1995) 144, 83–90


Endocrinology ◽  
2007 ◽  
Vol 148 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Rubén Nogueiras ◽  
Paul Pfluger ◽  
Sulay Tovar ◽  
Myrtha Arnold ◽  
Sharon Mitchell ◽  
...  

Ghrelin stimulates food intake and adiposity and thereby increases body weight (BW) in rodents after central as well as peripheral administration. Recently, it was discovered that the gene precursor of ghrelin encoded another secreted and bioactive peptide named obestatin. First reports appeared to demonstrate that this peptide requires an amidation for its biological activity and acts through the orphan receptor, GPR-39. Obestatin was shown to have actions opposite to ghrelin on food intake, BW, and gastric emptying. In the present study, we failed to observe any effect of obestatin on food intake, BW, body composition, energy expenditure, locomotor activity, respiratory quotient, or hypothalamic neuropeptides involved in energy balance regulation. In agreement with the first report, we were unable to find any effect of obestatin on GH secretion in vivo. Moreover, we were unable to find mRNA expression of GPR-39, the putative obestatin receptor, in the hypothalamus of rats. Therefore, the results presented here do not support a role of the obestatin/GPR-39 system in the regulation of energy balance.


2018 ◽  
Vol 237 (2) ◽  
pp. 165-173 ◽  
Author(s):  
J T Smith ◽  
A Roseweir ◽  
M Millar ◽  
I J Clarke ◽  
R P Millar

Kisspeptin signalling is indispensable for fertility, stimulating gonadotropin-releasing hormone (GnRH) secretion and mediating gonadal steroid feedback on GnRH neurons. Moreover, kisspeptin neurons have been implicated in other non-reproductive neuroendocrine roles. Kisspeptin appears to also regulate growth hormone secretion but much of the data appear contradictory. We sought to clarify a potential role of kisspeptin in growth hormone (GH) regulation by examining the effect of kisspeptin antagonists on GH secretion in ewes under various physiological conditions. Our data show clear and robust increases in GH secretion following lateral ventricle or third ventricle infusion of kisspeptin antagonists p-234 and p-271 in either ovariectomized or anestrous ewes. Central infusion of kisspeptin-10 had no effect on GH secretion. To determine the level at which kisspeptin may influence GH secretion, we examined expression of the cognate kisspeptin receptor, GPR54, in pituitary cells and showed by immunocytochemistry that the majority of somatotropes express GPR54 while expression was largely negative in other pituitary cells. Overall, we have demonstrated that blocking kisspeptin signalling by antagonists stimulates GH secretion in ewes and that this is likely mediated by inhibiting endogenous kisspeptin activation of GPR54 expressed on somatotropes. The findings suggest that endogenous kisspeptin inhibits GH secretion through GPR54 expressed on somatotropes.


2021 ◽  
pp. 1-24
Author(s):  
Jan M. Wit ◽  
Sjoerd D. Joustra ◽  
Monique Losekoot ◽  
Hermine A. van Duyvenvoorde ◽  
Christiaan de Bruin

The current differential diagnosis for a short child with low insulin-like growth factor I (IGF-I) and a normal growth hormone (GH) peak in a GH stimulation test (GHST), after exclusion of acquired causes, includes the following disorders: (1) a decreased spontaneous GH secretion in contrast to a normal stimulated GH peak (“GH neurosecretory dysfunction,” GHND) and (2) genetic conditions with a normal GH sensitivity (e.g., pathogenic variants of <i>GH1</i> or <i>GHSR</i>) and (3) GH insensitivity (GHI). We present a critical appraisal of the concept of GHND and the role of 12- or 24-h GH profiles in the selection of children for GH treatment. The mean 24-h GH concentration in healthy children overlaps with that in those with GH deficiency, indicating that the previously proposed cutoff limit (3.0–3.2 μg/L) is too high. The main advantage of performing a GH profile is that it prevents about 20% of false-positive test results of the GHST, while it also detects a low spontaneous GH secretion in children who would be considered GH sufficient based on a stimulation test. However, due to a considerable burden for patients and the health budget, GH profiles are only used in few centres. Regarding genetic causes, there is good evidence of the existence of Kowarski syndrome (due to <i>GH1</i> variants) but less on the role of <i>GHSR</i> variants. Several genetic causes of (partial) GHI are known (<i>GHR</i>, <i>STAT5B</i>, <i>STAT3</i>, <i>IGF1</i>, <i>IGFALS</i> defects, and Noonan and 3M syndromes), some responding positively to GH therapy. In the final section, we speculate on hypothetical causes.


Endocrine ◽  
2005 ◽  
Vol 28 (3) ◽  
pp. 295-302 ◽  
Author(s):  
Enrique Aguilar ◽  
Manuel Tena-Sempere ◽  
Leonor Pinilla

2013 ◽  
Vol 80 (6) ◽  
pp. 381-389 ◽  
Author(s):  
Maria Consolata Miletta ◽  
Martin H. Schöni ◽  
Kristin Kernland ◽  
Primus E. Mullis ◽  
Vibor Petkovic

2009 ◽  
Vol 390 (4) ◽  
pp. 1377-1381 ◽  
Author(s):  
Yolanda Pazos ◽  
Carlos J.P. Álvarez ◽  
Jesús P. Camiña ◽  
Omar Al-Massadi ◽  
Luísa M. Seoane ◽  
...  

1984 ◽  
Vol 4 (12) ◽  
pp. 995-1000 ◽  
Author(s):  
Janet E. Merritt ◽  
Pauline R. M. Dobson ◽  
Richard J. H. Wojcikiewicz ◽  
John G. Baird ◽  
Barry L. Brown

A possible role for Ca 2+ and calmodulin in the action of growth-hormone-releasing factor (GHRF) was investigated. Low extracellular Ca2+ (<100 μM), methoxyverapamil, flunarizine, cinnarizine, and Co2+ decreased both basal and GHRF-stimulated growth-hormone secretion, but did not totally inhibit GHRF-stimulation secretion. A calmodulin antagonist, W7, abolished GHRF-stimulated GH secretion, with no effect on basal secretion. It is suggested that GHRF may act primarily by elevating cellular cyclic AMP, which may then modulate calcium mobilization or flux; the increased intracellular Ca2+ concentrations may then activate calmodulin.


Sign in / Sign up

Export Citation Format

Share Document