Clomiphene citrate induces pituitary GnRH receptors in ovariectomized rats: its possible role in induction of ovulation

1986 ◽  
Vol 111 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Ikuya Shimizu ◽  
Naoki Terakawa ◽  
Toshihiro Aono ◽  
Osamu Tanizawa ◽  
Keishi Matsumoto

Abstract. Since our previous studies have shown that clomiphene citrate (clomiphene) acts directly on the pituitary gland and exerts a facilitatory role on oestradiol-17β (E2)-induced LH surge in chronically ovariectomized rats, the effect of clomiphene on pituitary GnRH receptors was investigated. A single ip injection of either 5 μg E2 or 200 μg clomiphene did not induce LH release in adult rats ovariectomized 1–2 weeks before the injection. However, a significant increase in serum LH was noted 24 h after a single injection of E2 in the ovariectomized rats, if clomiphene was pre-injected 48 h before the E2 injection. The content of pituitary GnRH receptors in the ovariectomized rats (62 ± 9 fmol/pituitary) remained almost unchanged until 24 h after a single injection of clomiphene but significantly increased 48 h after the injection (105 ± 13 fmol/pituitary) without any alterations in the affinity for GnRH. To determine steroid specificity for the increase in pituitary GnRH receptors, other classes of steroids were injected in the ovariectomized rats. A single dose of E2 increased GnRH receptors, but either progesterone or 5α-dihydrotestosterone failed to show any effect on the level of GnRH receptors. These results suggest that clomiphene may augment oestrogen-induced pre-ovulatory LH surge in anovulatory women, at least in part by increasing the number of pituitary GnRH receptors.

1985 ◽  
Vol 109 (1) ◽  
pp. 58-63 ◽  
Author(s):  
Naoki Terakawa ◽  
Ikuya Shimizu ◽  
Hirohisa Tsutsumi ◽  
Toshihiro Aono ◽  
Keishi Matsumoto

Abstract. A possible role of clomiphene citrate (clomiphene) in the control of ovulation in anovulatory women was investigated. Since a single ip administration of 5 μg oestradiol-17β (E2) to long-term ovariectomized rats did not induce LH surge, the following studies were designed to determine whether pretreatment with clomiphene followed by administration of E2 could induce LH surge in the ovariectomized rats. Changes in cytoplasmic and nuclear oestrogen receptors (ER) were also examined in the pituitaries of these animals. An ip injection of 200 μg clomiphene suppressed serum LH levels significantly for 72 h. The clomiphene injection rapidly caused an elevation of nuclear ER with a concomitant depletion of cytoplasmic ER level in the pituitary and the ER levels remained almost unchaged for 72 h. An administration of E2 12 or 24 h after the clomiphene injection had no significant effects on either the serum LH levels or the cytoplasmic and nuclear ER levels, compared with those induced by clomiphene alone. However, LH surge and the depletion of nuclear ER in the pituitary occurred 24 h later when E2 was injected 48 h after the clomiphene administration. The E2-induced LH release seems to be induced by a replacement of clomiphene by E2 on the nuclear receptor complex. These results suggest that clomiphene may exert actions directly on the pituitary gland to augment oestrogeninduced LH release.


1980 ◽  
Vol 87 (3) ◽  
pp. 383-392 ◽  
Author(s):  
E. Y. ADASHI ◽  
A. J. W. HSUEH ◽  
S. S. C. YEN

Alterations in the concentrations of oestrogen receptors in the uterus, pituitary gland and hypothalamus during the 2 weeks following a single administration of clomiphene citrate (Clomid) to immature, bilaterally ovariectomized rats were investigated. Examination of the uterine wet weight at 1, 7 and 14 days following a single injection of Clomid (100 μg, 250 μg or 10 mg) indicated significant time- and dose-related increments from a control value of 45 ± 2 (s.e.m.) mg to a maximum of 123 ± 3 mg (250 μg dose at 14 days). In contrast, a single injection of oestradiol led to a transient increase in the uterine weight on day 1 to 94 ± 6 mg, but was without effect by days 7 and 14. Analysis of the uterine DNA content 7 and 14 days after treatment with Clomid revealed significant increments from control values of 390 ± 10 μg to a high level of 558 ± 8 μg (10 mg dose at 7 days). There was a transient retention of nuclear oestrogen receptors and rapid replenishment of cytoplasmic oestrogen receptors in less than 24 h in the uteri of animals treated with oestradiol (25 μg), but determinations of receptor content in Clomid-treated animals revealed prolonged retention of nuclear receptors and delayed replenishment of cytoplasmic receptors. The duration and extent of retention of nuclear receptors and depletion of cytoplasmic receptors after treatment with Clomid were found to be dose-dependent. Fourteen days after Clomid treatment, levels of oestrogen receptors in nuclei from the uterus were still raised in all treatment groups, whereas replenishment of cytoplasmic receptors was complete in animals treated with the lower doses (100 and 250 μg) of Clomid. A single injection of Clomid (250 μg) induced similar prolonged retention of nuclear receptors and delayed depletion of cytoplasmic receptors in pituitary tissue. In contrast, changes in the content of oestrogen receptors in the hypothalamus following Clomid treatment were minimal. The limited effect of Clomid on hypothalamic tissue may mean that the pituitary gland is a more important target for this compound than is the hypothalamus. The findings have confirmed earlier reports on the long-term uterotrophic effect of Clomid and have suggested that under these long-term, in-vivo conditions, Clomid acts in the uterus and pituitary gland as a long-acting oestrogen characterized by prolonged retention of oestrogen receptors in the nucleus and delayed, but otherwise effective, replenishment of the oestrogen receptors in the cytoplasm.


1982 ◽  
Vol 94 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Takashi Higuchi ◽  
Masazumi Kawakami

Changes in the characteristics of LH secretory pulses in female rats were determined in different hormonal conditions; during the oestrous cycle and after ovariectomy and oestrogen treatment. The frequency and amplitude of the LH pulses were stable during the oestrous cycle except at oestrus when a pattern could not be discerned because of low LH concentrations. These were significantly lower than those measured during other stages of the cycle. Mean LH concentrations and LH pulse amplitudes increased with time up to 30 days after ovariectomy. The frequency of the LH pulse was unchanged 4 days after ovariectomy when mean LH levels had already increased. The frequency increased 10 days after ovariectomy and then remained stable in spite of a further increase in mean serum LH concentrations. Oestradiol-17β injected into ovariectomized rats caused a decrease in LH pulse amplitude but no change in pulse frequency. One day after treatment with oestradiol benzoate no LH pulse was detectable, probably because the amplitude was too small. A generator of pulsatile LH release is postulated and an oestrogen effect on its function is discussed.


1984 ◽  
Author(s):  
◽  
Benjamin Adler

These studies tested the interrelated hypotheses that the ovarian hormones produce their positive feedback effects on luteinizing hormone (LH) secretion through activation of noradrenergic and adrenergic systems in specific hypothalamic regions. Furthermore, the ovarian hormones may alter the activity of opioid neuropeptide and Gamma-Aminobutyric Acid (GABA) systems to produce these alterations in catecholamine transmission and gonadotropin secretion. Radioimmunoassays were utilized to determine plasma LH and median eminence LHRH, and hypothalamic catecholamine concentrations were measured by radioenzymatic assay. The first two studies tested whether epinephrine (EPI) synthesis inhibition blocks the accumulation of median eminence LHRH that precedes the ovarian hormone-induced LH surge and also to test whether the stimulatory ovarian hormone regimen enhances the activity of hypothalamic EPI systems. Ovariectomized rats were primed with estradiol (EB), followed 2 days later by progesterone (Prog.). Animals were treated before Prog, administration with saline, one of the EPI synthesis inhibitors SKF 64139 or LY 78335, or the norepinephrine (NE) synthesis inhibitor, FLA-63. The catecholamine synthesis inhibitors blocked or delayed the LH surge. FLA-63 completely prevented the accumulation of LHRH in the median eminence that preceded the rise in LH release. However, selective reduction in EPI levels with SKF 64139 only partially prevented this increase in LHRH. A second EPI synthesis inhibitor, LY 78335, delayed both the LH surge and the rise in LHRH. In a second experiment, the administration of EB plus Prog, to ovariectomized rats increased the alpha-methyltyrosine (aMT) induced depletion of EPI in the medial basal hypothalamus (MBH). The depletion of NE after synthesis inhibition was enhanced in both the MBH and preoptic-anterior hypothalamus (POA). Experiments 3 and 4 examined a possible mechanism underlying these ovarian hormone effects on LH release and catecholamine activity. These studies tested whether the opiate antagonist, naloxone, which increases LH release, enhances the activity of NE and EPI neurons in the hypothalamus, and also tested whether morphine, an opiate agonist which decreases LH release, depresses the activity of hypothalamic NE and EPI activity. Administration of naloxone to EB-primed rats increased LH release and potentiated the depletion of NE in the POA and MBH, and enhanced the decline of EPI and dopamine (DA) in the MBH, suggesting increased catecholamine activity in these regions. Administration of the opiate agonist, morphine, to rats pretreated with EB and Prog., decreased LH and decreased the depletion of the catecholamines in the POA and MBH, suggesting reduced activity. In most cases, naloxone antagonized the inhibitory effect of morphine. Experiments 3, 6, and 7 examined the involvement of (GABA) systems in the positive feedback effects of EB and Prog, on LHRH and LH release. These studies tested 1) the effects of GABAergic drugs on the LH surge induced by EB and Prog., 2) whether GABA agonists reduce NE and EPI activity in the hypothalamus, and 3) whether a GABA agonist prevents the accumulation of median eminence LHRH induced by EB and Prog. Ovariectomized rats received the stimulatory EB plus Prog, treatment. Simultaneously with Prog., rats received either saline, the barbiturate, phenobarbital, the GABAg agonist, baclofen, the GABA^ agonist, muscimol, or either the GABA^ antagonist, bicuculline, or the putative GABAg antagonist, 5-aminovalerate. Additional experiments tested the effects of the GABA drugs on LH release in ovariectomized, hormonally untreated rats and in response to exogenous LHRH. The LH surge induced by EB+Prog. was blocked by treatment with either baclofen, muscimol, or phenobarbital. Bicuculline was ineffective in preventing the effect of baclofen and phonobarbital but partially prevented the effect of muscimol. Neither baclofen nor muscimol significantly affected LH release in hormonally untreated, ovariectomized rats or in rats receiving LHRH administration. In the results of Experiment 6, in EB plus Prog.-treated rats, baclofen and muscimol significantly reduced the concentrations of EPI and NE in the POA and MBH and prevented their decline after administration of otMT, suggesting decreased catecholamine transmission. In Experiment 7, rats were primed with the ovarian hormones and received, concurrently with Prog., either saline, or baclofen. The GABAg agonist, baclofen, blocked the LH surge and selectively increased LHRH concentrations. Experiment 8 tested 1) whether baclofen reverses the enhancement of LH release and catecholamine activity produced by naloxone, and 2) whether the opiate antagonist, nalmefene, prevents the blockade of the LH surge produced by baclofen. In the first study of Experiment 8, naloxone increased LH release and enhanced catecholamine activity in EB-primed rats. Baclofen was unable to reverse these effects. In the second study, baclofen administration to EB plus P treated rats blocked the LH surge and concomitant administration of nalmefene was unable to prevent this effect of baclofen. These results suggest that: 1) the ovarian hormones activate both NE and EPI systems to stimulate the early afternoon rise of LHRH in the median eminence and to induce the subsequent LH surge, 2) the ovarian hormones may produce their positive feedback effects on LH secretion by removing an inhibitory GABA or opioid neuropeptide influence on catecholamine transmission, allowing NE and EPI to stimulate LHRH, and subsequently, LH release, and 3) these modulatory actions of GABA and opiates may represent effects of two parallel, yet independent hypothalamic systems which regulate catecholamine neurotransmission and subsequently LH secretion.


1975 ◽  
Vol 64 (1) ◽  
pp. 27-35 ◽  
Author(s):  
F. R. BURNET ◽  
P. C. B. MACKINNON

SUMMARY The rate of [35S]methionine incorporation into protein in discrete cerebral areas was measured before and after the administration of oestradiol benzoate (OB) to chronically ovariectomized rats. The circadian rhythm of incorporation which is normally seen in the intact cyclic female rat was deleted by ovariectomy. A daily rhythm of incorporation reappeared, however, in all the brain areas studied 30 h after a single injection of OB (20 μg), and was still present 12 days later. The release of luteinizing hormone (LH) after administration of 20 μg OB was measured in chronically ovariectomized animals and was found to be biphasic. High levels of LH after ovariectomy were initially reduced by negative feedback, but this phase was followed 52 h later by a facilitation of LH release between 15.00 and 18.00 h. The facilitation of LH release at this time of day was still detectable 12 days after the initial injection. The evidence for a functional link between the rhythm of neural activity which is reflected by [35S]methionine incorporation, and the ability to 'time' the facilitation of LH release is discussed.


1993 ◽  
Vol 139 (2) ◽  
pp. 253-258 ◽  
Author(s):  
A. M. Salicioni ◽  
R. W. Carón ◽  
R. P. Deis

ABSTRACT There is evidence that the adrenals play a role in the regulation of the synthesis and release of gonadotrophins in various vertebrates. The aim of this study was to determine the part played by adrenal steroids, with special reference to progesterone, on the concentration of LH in ovariectomized (OVX) and oestrogen-primed rats. OVX rats received a single s.c. injection of vehicle or oestradiol benzoate (OB, 20 μg/rat). This day was designated as day 0. Three or four days later (day 3–day 4), the rats were treated with mifepristone (10 mg/kg) or with two doses of progesterone antiserum and blood samples were obtained at 13.00 and 18.00 h. OB treatment of OVX rats reduced serum LH at 13.00 h and 18.00 h on day 3 but only at 13.00 h on day 4. The administration of mifepristone at 08.00 h to OVX and oestrogen-treated rats induced a significant increase in serum LH at 18.00 h on days 3 and 4, without modifying the values at 13.00 h. When mifepristone was given at 13.00 h a much larger increase in serum LH was obtained at 18.00 h. In OVX and oestrogen-treated rats, adrenalectomy on day 2 (08.00–09.00 h) induced an increase in serum LH at 18.00 h similar to that observed in the OVX and oestrogen-primed rats after mifepristone treatment. In order to determine the specificity of the effect of mifepristone, a group of OVX and oestrogentreated rats was injected with progesterone antiserum at 08.00 and 13.00 h on day 3. Serum LH concentrations at 13.00 and 18.00 h on day 3 were similar to values obtained in OVX rats treated with oestrogen and mifepristone. Serum progesterone was measured at 08.00 and 13.00 h in OVX and OVX and oestrogenprimed rats. At both times, values were similar in OVX rats but oestrogen treatment significantly increased serum progesterone levels. The important role of adrenal progesterone on the regulation of LH secretion in OVX and oestrogen-primed rats is evident from these results. Blocking progesterone action at the receptor level, we showed that OB significantly increased LH values at 18.00 h. On the basis of these studies it is tempting to speculate on the possibility of an inhibitory or stimulatory effect of oestrogen on serum LH concentration in OVX rats, according to the presence or absence of adrenal progesterone action. Journal of Endocrinology (1993) 139, 253–258


1981 ◽  
Vol 88 (1) ◽  
pp. 17-25 ◽  
Author(s):  
E. M. CONVEY ◽  
J. S. KESNER ◽  
V. PADMANABHAN ◽  
T. D. CARRUTHERS ◽  
T. W. BECK

In ovariectomized heifers, oestradiol decreases concentrations of LH in serum for approximately 12 h after which LH is released in a surge comparable in size and duration to the preovulatory surge. Using this model, we measured LH release induced by LH releasing hormone (LH-RH) from pituitary explants taken from ovariectomized heifers before or after an oestradiol-induced LH surge. These changes were related to changes in LH concentrations in serum and pituitary glands and hypothalamic LH-RH content. Twenty Holstein heifers were randomly assigned to one of four treatment groups to be killed 0, 6, 12, or 24 h after the injection of 500 μg oestradiol-17β. Jugular blood was collected at −2, −1 and 0 h then at intervals of 2 h until slaughter. Pituitary glands were collected and ≃2 mm3 explants were exposed to 4 ng LH-RH/ml medium for 30 min (superfusion) or 4 ng LH-RH/ml medium for 2 h in Erlenmeyer flasks. Levels of LH were measured in the medium. Hypothalami, collected at autopsy, were assayed for LH-RH content. To determine pituitary LH content, an additional 15 ovariectomized heifers were killed, five each at 0, 12 and 24 h after the injection of 500 μg oestradiol. In both groups of heifers, oestradiol reduced serum LH concentrations to ≃ 1 ng/ml, a level which persisted for 12 h, when LH was released in a surge. Pituitary sensitivity to LH-RH was increased at 6 and 12 h after the injection of oestradiol, but was markedly decreased at 24 h, i.e. after the LH surge. Despite this twofold increase in capacity of the pituitary gland to release LH in response to LH-RH, pituitary LH content did not change during 12 h after oestradiol treatment. However, LH content decreased after the LH surge and this decrease was associated with a decrease in pituitary responsiveness to LH-RH. Hypothalamic LH-RH content was not altered by these treatments. We have interpreted our results as evidence that oestradiol exerts a positive feedback effect on the pituitary gland of ovariectomized heifers such that pituitary sensitivity to LH-RH is increased twofold by the time the LH surge is initiated. In addition, oestradiol causes a transitory inhibition of LH-RH release as shown by the fact that serum LH concentrations remained low during the interval from injection of oestradiol until the beginning of the LH surge despite the fact that pituitary sensitivity to LH-RH is increased at this time. Depletion of a readily releasable pool of pituitary LH may be the mechanism by which the LH surge is terminated.


1990 ◽  
Vol 4 (2) ◽  
pp. 119-125 ◽  
Author(s):  
M. Corbani ◽  
R. Counis ◽  
E. Wolinska-Witort ◽  
G. d'Angelo-Bernard ◽  
M. Moumni ◽  
...  

ABSTRACT The effects of oestradiol and progesterone on LH-subunit mRNA levels were investigated in ovariectomized rats. Four weeks after ovariectomy, rats were implanted with silicone elastomer capsules containing oestradiol and/or injected daily with progesterone in oil (5 mg/rat) for 8 days. The levels of pituitary mRNA encoding α and LH-β were determined using direct hybridization with specific [32P]cDNA probes. After oestradiol implantation in ovariectomized rats, both α and LH-β mRNA decreased with time, with maximum inhibition after 6–8 days of treatment. Progesterone injected alone did not show any effect on α and LH-β mRNA. Cytosolic progesterone receptors, determined using [3H]methyl-17α-progesterone as ligand, were undectable in control ovariectomized rats. In contrast, 2 days after oestradiol implantation, the number of receptors increased to 287·5 ± 35·4 (s.e.m.) fmol/pituitary and reached a plateau of 400 ± 21·8 fmol/pituitary after 4 days. The effects of progesterone were therefore examined by first implanting ovariectomized rats with oestradiol to induce progesterone receptors and then injecting progesterone daily for a further period of 6 days. As a result of this treatment, progesterone induced a decrease in the pituitary gland contents of both α and LH-β mRNAs, and LH release was significantly greater than that observed in the group receiving oestradiol alone. Moreover, the mRNA levels in the animals treated with oestradiol plus progesterone were lower after 8 days of treatment than those observed in ovariectomized rats treated with a tenfold higher dose of oestradiol alone. These data demonstrate that progesterone, together with oestradiol, is capable of negatively regulating the mRNAs encoding subunits in vivo, provided that progesterone receptors are present in the pituitary gland.


Endocrinology ◽  
2015 ◽  
Vol 156 (11) ◽  
pp. 4200-4213 ◽  
Author(s):  
Cleyde V. Helena ◽  
Natalia Toporikova ◽  
Bruna Kalil ◽  
Andrea M. Stathopoulos ◽  
Veronika V. Pogrebna ◽  
...  

Kisspeptin is the most potent stimulator of LH release. There are two kisspeptin neuronal populations in the rodent brain: in the anteroventral periventricular nucleus (AVPV) and in the arcuate nucleus. The arcuate neurons coexpress kisspeptin, neurokinin B, and dynorphin and are called KNDy neurons. Because estradiol increases kisspeptin expression in the AVPV whereas it inhibits KNDy neurons, AVPV and KNDy neurons have been postulated to mediate the positive and negative feedback effects of estradiol on LH secretion, respectively. Yet the role of KNDy neurons during the positive feedback is not clear. In this study, ovariectomized rats were microinjected bilaterally into the arcuate nucleus with a saporin-conjugated neurokinin B receptor agonist for targeted ablation of approximately 70% of KNDy neurons. In oil-treated animals, ablation of KNDy neurons impaired the rise in LH after ovariectomy and kisspeptin content in both populations. In estradiol-treated animals, KNDy ablation did not influence the negative feedback of steroids during the morning. Surprisingly, KNDy ablation increased the steroid-induced LH surges, accompanied by an increase of kisspeptin content in the AVPV. This increase seems to be due to lack of dynorphin input from KNDy neurons to the AVPV as the following: 1) microinjections of a dynorphin antagonist into the AVPV significantly increased the LH surge in estradiol-treated rats, similar to KNDy ablation, and 2) intra-AVPV microinjections of dynorphin in KNDy-ablated rats restored LH surge levels. Our results suggest that KNDy neurons provide inhibition to AVPV kisspeptin neurons through dynorphin and thus regulate the amplitude of the steroid-induced LH surges.


1980 ◽  
Vol 85 (2) ◽  
pp. 307-315 ◽  
Author(s):  
M. S. BLANK ◽  
A. E. PANERAI ◽  
H. G. FRIESEN

The effects of subcutaneous injections of the opiate antagonist naloxone on the tonic and phasic secretion of prolactin and LH were studied in rats. During development, resting levels of prolactin in serum were decreased by naloxone (2·5 mg/kg body wt) on days 24,45 and 50 in female rats and on days 28,45 and 50 in male rats. In the adult, naloxone (2·5 mg/kg body wt) decreased basal levels of serum prolactin in male rats and levels during oestrus in female rats. In 25-day-old female rats, serum LH rose from resting levels within 7·5 min of naloxone administration (2·5 mg/kg body wt) and returned to pretreatment levels by 30 min, while prolactin fell by 7·5 min and remained low for as long as 60 min after treatment. Furthermore, a tenfold lower dose of naloxone (0·25 mg/kg body wt) did not raise basal levels of serum LH but still decreased resting levels of serum prolactin in immature female rats (24 days old). The effect of naloxone (2·5 mg/kg body wt) on phasic LH release was studied in 29-day-old immature female rats primed on day 27 with pregnant mare serum gonadotrophin (PMSG). In these PMSG-treated rats the onset of the prolactin surge was blunted by naloxone while it had no effect on phasic LH release. Naloxone (5 mg/kg body wt) also induced a rise in levels of serum LH in ovariectomized rats and, if administered with morphine, it reversed the short-term inhibition of LH secretion caused by morphine. However, naloxone was ineffective after pretreatment with oestradiol benzoate. These findings suggest that the responses of serum LH and prolactin to naloxone were dissociated and that oestrogens and opiate peptides may have interacted to regulate secretion of LH.


Sign in / Sign up

Export Citation Format

Share Document