Pancreatic and islet blood flow in F1-hybrids of the non-insulin-dependent diabetic GK-Wistar rat

1994 ◽  
Vol 130 (6) ◽  
pp. 612-616 ◽  
Author(s):  
Annika M Svensson ◽  
Samy M Abdel-Halim ◽  
Suad Efendic ◽  
Leif Jansson ◽  
Claes-Göran Östenson

Svensson AM, Abdel-Halim SM, Efendic S, Jansson L, Östenson C-G. Pancreatic and islet blood flow in F1 -hybrids of the non-insulin-dependent diabetic GK-Wistar rat. Eur J Endocrinol 1994:130:612–16. ISSN 0804–4643 Previous studies have indicated that various conditions under which an increased functional load is posed on the pancreatic islets, e.g. partial pancreatectomy and continuous glucose infusions, may influence the microcirculation of the pancreas. To investigate further the effects of elevated functional demand on the islets, the blood perfusion of the whole pancreas and the pancreatic islets was measured with a microsphere technique in an animal model presenting impaired glucose tolerance and mild hyperglycemia, namely F 1-hybrids of the spontaneously non-insulin-dependent diabetic GK-Wistar rat. Normal Wistar rats served as controls. All hybrids had a pathological intraperitoneal glucose tolerance test 1 week before the blood flow measurements, which were performed in 10–12-week-old rats. Both the whole pancreatic and the islet blood flows were increased in the hybrids compared to controls. The fractional islet blood flow, i.e. the fraction of whole pancreatic blood flow diverted through the islets, also was increased in the hybrid rats (12.6 ±0.6% vs 9.8 ±0.5% in controls, p <0.01). A bilateral abdominal vagotomy performed 30 min before the blood flow measurement markedly decreased the blood flow values of the islets and the whole pancreas in both groups of rats. After vagotomy, the islet blood flow in the hybrid rats was similar to that of the vagotomized control animals (8.2 ± 0.8 and 7.5 ± 1.4%, respectively). It is concluded that the increased pancreatic and islet blood perfusion observed in F 1-hybrids of the GK-Wistar rat depends on a mechanism mediated by the vagus nerve. Annika M Svensson, Department of Medical Cell Biology, Biomedical Centre, PO Box 571, S-75123 Uppsala, Sweden

1990 ◽  
Vol 259 (1) ◽  
pp. E52-E56 ◽  
Author(s):  
L. Jansson ◽  
S. Sandler

Adult rats were partially depancreatized, and approximately 500 islets were isolated from each excised pancreas, maintained in tissue culture for 7 days, and subsequently transplanted back to the same animals beneath the renal capsule. Four weeks after transplantation the animals were anesthetized and given an intravenous injection of 1 ml of either saline, 30% (wt/vol) D-glucose, 30% (wt/vol) D-galactose, DL-propranolol (15 mg/kg body wt) dissolved in saline, or terbutaline (1 mg/kg body wt) dissolved in saline. Five minutes later blood perfusion of the islet grafts and the pancreatic remnant were measured with a microsphere technique. Islet blood flow was also measured in animals with pancreas intact and no islet grafts after administration of saline, glucose, or galactose. These animals demonstrated a significant and preferential increase in islet blood flow after glucose administration, whereas galactose caused a selective decrease in islet blood perfusion. Both whole pancreatic blood flow and islet blood flow in the pancreatic remnant were decreased by terbutaline administration, whereas the other substances had no effect. Blood flow to the transplanted islets was decreased by glucose and galactose, whereas propranolol and terbutaline had no effect compared with the saline-injected animals. These results suggest that blood flow regulation differs between transplanted pancreatic islets, islets in the normal pancreas, and islets in the pancreatic remnant after partial pancreatectomy. Whether this reflects lack of innervation or an altered reactivity of the newly formed blood vessels in islet grafts is presently unknown.


1996 ◽  
Vol 151 (3) ◽  
pp. 507-511 ◽  
Author(s):  
A M Svensson ◽  
C Hellerström ◽  
L Jansson

Abstract The aim of the present study was to evaluate the effects of diet-induced obesity on pancreatic islet blood perfusion in normal Wistar rats. Furthermore, we investigated to what extent any obesity-associated changes in islet blood flow could be reversed after reversion to a normal diet with normalization of body weight. Young adult female Wistar rats were offered a palatable mixed high-caloric diet (cafeteria diet) in addition to standard pelleted chow. Age-matched control rats received standard pelleted chow only. After 4 weeks the diet-treated rats had a body weight of approximately 15% more than that of the controls. All diet-treated rats had decreased glucose tolerance and increased serum insulin concentrations, but basal blood glucose concentrations were similar in anesthetized diet-treated and control rats. Whole pancreatic and islet blood flow rates were measured with a microsphere technique. The islet blood flow as well as fractional islet blood flow were increased (P<0·01) in rats fed the cafeteria diet, while blood perfusion of the whole pancreas was similar to that of the control rats. In a second experiment, rats received the cafeteria diet for 4 weeks and were then fed standard pelleted food alone for another 3 weeks, while controls received standard diet for 7 weeks. After this period total body weight, retroperitoneal fat pad weight and glucose tolerance were similar to those of the controls. Whole pancreatic blood flow was unchanged as compared with that of control rats. However, both islet blood flow (P<0·01) and fractional blood flow (P<0·01) were increased. We conclude that diet-induced obesity in rats is associated with decreased glucose tolerance, hyperinsulinemia and a specific increase in absolute and fractional islet blood perfusion. This increase persists for at least 3 weeks after the diet is withdrawn despite normalization of body weight and glucose tolerance. Journal of Endocrinology (1996) 151, 507–511


2005 ◽  
Vol 184 (2) ◽  
pp. 319-327 ◽  
Author(s):  
Annika M Svensson ◽  
Claes-Göran Östenson ◽  
Birgitta Bodin ◽  
Leif Jansson

The effects of a 60% partial pancreatectomy were studied in hyperglycemic GK (Goto–Kakizaki) rats. Partial pancreatectomy or a sham operation was performed on 12-week-old female Wistar rats, GK rats or hybrids between male GK rats and female Wistar rats. Measurements of pancreatic blood flow and islet blood flow were performed by a microsphere technique 2 weeks after surgery. Glucose tolerance was decreased in hybrid compared with Wistar rats, and in GK rats compared with both hybrid and Wistar rats before surgery. Partial pancreatectomy induced minor changes in glucose tolerance. Wistar rats had a decreased islet mass following partial pancreatectomy. Both hybrid and GK rats showed a significant decrease in relative islet volume, but only GK rats in total islet mass, compared with Wistar rats 2 weeks after surgery. Pancreatic blood flow and islet blood flow did not significantly differ between sham-operated Wistar, hybrid or GK rats. After partial pancreatectomy, islet blood flow in relation to islet mass increased 3-fold in Wistar rats and 2-fold in hybrid rats. In contrast, GK rats showed no increase in islet blood flow following partial pancreatectomy. It is concluded that compensatory mechanisms after partial pancreatectomy are operating less effciently in hybrid and GK rats.


2010 ◽  
Vol 298 (4) ◽  
pp. E807-E814 ◽  
Author(s):  
Lara R. Nyman ◽  
Eric Ford ◽  
Alvin C. Powers ◽  
David W. Piston

Pancreatic islets are highly vascularized and arranged so that regions containing β-cells are distinct from those containing other cell types. Although islet blood flow has been studied extensively, little is known about the dynamics of islet blood flow during hypoglycemia or hyperglycemia. To investigate changes in islet blood flow as a function of blood glucose level, we clamped blood glucose sequentially at hyperglycemic (∼300 mg/dl or 16.8 mM) and hypoglycemic (∼50 mg/dl or 2.8 mM) levels while simultaneously imaging intraislet blood flow in mouse models that express green fluorescent protein in the β-cells or yellow fluorescent protein in the α-cells. Using line scanning confocal microscopy, in vivo blood flow was assayed after intravenous injection of fluorescent dextran or sulforhodamine-labeled red blood cells. Regardless of the sequence of hypoglycemia and hyperglycemia, islet blood flow is faster during hyperglycemia, and apparent blood volume is greater during hyperglycemia than during hypoglycemia. However, there is no change in the order of perfusion of different islet endocrine cell types in hypoglycemia compared with hyperglycemia, with the islet core of β-cells usually perfused first. In contrast to the results in islets, there was no significant difference in flow rate in the exocrine pancreas during hyperglycemia compared with hypoglycemia. These results indicate that glucose differentially regulates blood flow in the pancreatic islet vasculature independently of blood flow in the rest of the pancreas.


1999 ◽  
Vol 277 (4) ◽  
pp. E617-E623 ◽  
Author(s):  
Christophe Broca ◽  
René Gross ◽  
Pierre Petit ◽  
Yves Sauvaire ◽  
Michèle Manteghetti ◽  
...  

We have recently shown in vitro that 4-hydroxyisoleucine (4-OH-Ile), an amino acid extracted from fenugreek seeds, potentiates insulin secretion in a glucose-dependent manner. The present study was designed to investigate whether 4-OH-Ile could exert in vivo insulinotropic and antidiabetic properties. For this purpose, intravenous or oral glucose tolerance tests (IVGTTs and OGTTs, respectively) were performed not only in normal animals but also in a type II diabetes rat model. During IVGTT in normal rats or OGTT in normal dogs, 4-OH-Ile (18 mg/kg) improved glucose tolerance. The lactonic form of 4-OH-Ile was ineffective in normal rats. In non-insulin-dependent diabetic (NIDD) rats, a single intravenous administration of 4-OH-Ile (50 mg/kg) partially restored glucose-induced insulin response without affecting glucose tolerance; a 6-day subchronic administration of 4-OH-Ile (50 mg/kg, daily) reduced basal hyperglycemia, decreased basal insulinemia, and slightly, but significantly, improved glucose tolerance. In vitro, 4-OH-Ile (200 μM) potentiated glucose (16.7 mM)-induced insulin release from NIDD rat-isolated islets. So, the antidiabetic effects of 4-OH-Ile on NIDD rats result, at least in part, from a direct pancreatic B cell stimulation.


1987 ◽  
Vol 72 (1) ◽  
pp. 123-130 ◽  
Author(s):  
J. Kastrup ◽  
T. Nørgaard ◽  
H.-H. Parving ◽  
N. A. Lassen

1. The distensibility of the resistance vessels of the skin at the dorsum of the foot was determined in 11 long-term type 1 (insulin-dependent) diabetic patients with nephropathy and retinopathy, nine short-term type 1 diabetic patients without clinical microangiopathy and in nine healthy non-diabetic subjects. 2. Blood flow was measured by the local 133Xexenon washout technique in a vascular bed locally paralysed by the injection of histamine. Blood flow was measured before, during and after a 40 mmHg increase of the vascular transmural pressure, induced by head-up tilt. 3. The mean increase in blood flow during headup tilt was only 24% in diabetic subjects with and 48% in diabetic patients without clinical microangiopathy, compared with 79% in normal non-diabetic subjects (P < 0.0005 and P < 0.05, respectively). 4. An inverse correlation between microvascular distensibility and degree of hyalinosis of the terminal arterioles in biopsies from the skin was demonstrated (r = − 0.57, P < 0.001). 5. Our results suggest that terminal arteriolar hyalinosis reduces the microvascular distensibility and probably increases the minimal vascular resistance, thereby impeding hyperaemic responses.


2007 ◽  
Vol 292 (6) ◽  
pp. E1616-E1623 ◽  
Author(s):  
En Yin Lai ◽  
A. Erik G. Persson ◽  
Birgitta Bodin ◽  
Örjan Källskog ◽  
Arne Andersson ◽  
...  

Endothelin-1 (ET-1) is a potent endothelium-derived vasoconstrictor, which also stimulates insulin release. The aim of the present study was to evaluate whether exogenously administered ET-1 affected pancreatic islet blood flow in vivo in rats and the islet arteriolar reactivity in vitro in mice. Furthermore, we aimed to determine the ET-receptor subtype that was involved in such responses. When applying a microsphere technique for measurements of islet blood perfusion in vivo, we found that ET-1 (5 nmol/kg) consistently and markedly decreased total pancreatic and especially islet blood flow, despite having only minor effects on blood pressure. Neither endothelin A (ETA) receptor (BQ-123) nor endothelin-B (ETB) receptor (BQ-788) antagonists, alone or in combination, could prevent this reduction in blood flow. To avoid confounding interactions in vivo, we also examined the arteriolar vascular reactivity in isolated, perfused mouse islets. In the latter preparation, we demonstrated a dose-dependent constriction in response to ET-1. Administration of BQ-123 prevented this, whereas BQ-788 induced a right shift in the response. In conclusion, the pancreatic islet vasculature is highly sensitive to exogenous ET-1, which mediates its effect mainly through ETA receptors.


2005 ◽  
Vol 153 (2) ◽  
pp. 345-351 ◽  
Author(s):  
Leif Jansson ◽  
Birgitta Bodin ◽  
Örjan Källskog ◽  
Arne Andersson

Objectives: The aim of this study was to evaluate islet blood-flow changes during stimulated growth of the islet organ without any associated functional impairment of islet function. Design: A duct ligation encompassing the distal two-thirds of the pancreas was performed in adult, male Sprague–Dawley rats. Methods: Pancreatic islet blood flow was measured in duct-ligated and sham-operated rats 1, 2 or 4 weeks after surgery. In some animals studied 4 weeks after surgery, islet blood flow was also measured also during hyperglycaemic conditions. Results: A marked atrophy of the exocrine pancreas was seen in all duct-ligated rats. Blood glucose and serum insulin concentrations were normal. An increased islet mass was only seen 4 weeks after surgery. No differences in islet blood perfusion were noted at any time point after duct ligation. In both sham-operated and duct-ligated rats islet blood flow was increased during hyperglycaemia; the response was, however, slightly more pronounced in the duct-ligated part of the gland. Conclusions: Normal, physiological islet growth does not cause any major changes in the islet blood perfusion or its regulation. This is in contrast to findings during increased functional demands on the islets or during deteriorated islet function, when increased islet blood flow is consistently seen.


Sign in / Sign up

Export Citation Format

Share Document