scholarly journals mRNA expression of type I and type II receptors for activin, transforming growth factor-beta, and bone morphogenetic protein in the murine erythroleukemic cell line, F5-5.fl

2000 ◽  
pp. 705-710 ◽  
Author(s):  
H Machida ◽  
K Ogawa ◽  
M Funaba ◽  
T Mizutani ◽  
M Tsujimoto

OBJECTIVE: Intracellular signaling of activin and transforming growth factor-beta (TGF-beta) is thought to be mediated by the same molecules (Smad2/3 and Smad4). Although differentiation of murine erythroleukemia F5-5.fl cells is induced by activin, it is not induced by TGF-beta, suggesting that at some point TGF-beta signaling is defective. The aim of this study was to investigate the unresponsiveness of F5-5.fl cells to TGF-beta. DESIGN: mRNA expression of ligands, receptors, and signal mediators for the TGF-beta family was examined in F5-5.fl cells using RT-PCR. RESULTS: Activin induced erythrodifferentiation of F5-5.fl cells in a dose-dependent manner. Neither TGF-beta1 nor bone morphogenetic protein (BMP)-4 affected the differentiation of F5-5.fl cells in the presence or absence of activin. Although mRNAs of TGF-betas (TGF-beta1, TGF-beta2 and TGF-beta3) were detected, those of inhibin/activin (alpha-, betaA- and betaB-subunits) and BMPs (BMP-2, BMP-4 and BMP-7) could not be detected in the cells, suggesting that neither activins nor BMPs are produced in F5-5.fl cells. The expression of both type I (ALK-4/ActRIB) and type II (ActRII) receptors for activin was detected in F5-5.fl cells. In contrast, while the expression of type I receptor for TGF-beta (ALK-5/TbetaRI) was detected, that of type II receptor (TbetaRII) was not. The mRNA of all Smads examined was detected in F5-5.fl cells. CONCLUSIONS: A defect in the type II receptor might cause unresponsiveness to TGF-beta in F5-5.fl cells. An erythrodifferentiation assay using F5-5.fl cells would be useful for measuring net activin activity because it would not be necessary to consider endogenous activins and BMPs.

1995 ◽  
Vol 15 (6) ◽  
pp. 3273-3281 ◽  
Author(s):  
M Centrella ◽  
S Casinghino ◽  
J Kim ◽  
T Pham ◽  
V Rosen ◽  
...  

Transforming growth factor beta (TGF-beta), a potent regulator of bone formation, has bifunctional effects on osteoblast replication and biochemical activity that appear differentiation dependent. We now show that cell surface binding sites for TGF-beta vary markedly among fibroblasts, bone-derived cells, and highly differentiated osteosarcoma cultures from fetal rats. Expression of betaglycan and type II receptors decline relative to type I receptor expression in parallel with an increase in osteoblast-like activity, predicting that the ratio among various TGF-beta binding sites could influence how its signals are perceived. Bone morphogenetic protein 2 (BMP-2), which induces osteoblast function, does not alter TGF-beta binding or biochemical activity in fibroblasts and has only small effects in less differentiated bone cells. In contrast, BMP-2 rapidly reduces TGF-beta binding to betaglycan and type II receptors in osteoblast-enriched primary cell cultures and increases its relative binding to type I receptors in these cells and in ROS 17/2.8 cultures. Pretreatment with BMP-2 diminishes TGF-beta-induced DNA synthesis in osteoblast-enriched cultures but synergistically enhances its stimulatory effects on either collagen synthesis or alkaline phosphatase activity, depending on the present state of bone cell differentiation. Therefore, BMP-2 shifts the TGF-beta binding profile on bone cells in ways that are consistent with progressive expression of osteoblast phenotype, and these changes distinguish the biochemical effects mediated by each receptor. Our observations indicate specific stepwise actions by TGF-beta family members during osteoblast differentiation, developing in part from changes imprinted by BMP-2 on TGF-beta receptor stoichiometry.


1994 ◽  
Vol 269 (31) ◽  
pp. 20172-20178 ◽  
Author(s):  
H. Yamashita ◽  
P. ten Dijke ◽  
P. Franzén ◽  
K. Miyazono ◽  
C.H. Heldin

1991 ◽  
Vol 11 (10) ◽  
pp. 5338-5345
Author(s):  
B Kallin ◽  
R de Martin ◽  
T Etzold ◽  
V Sorrentino ◽  
L Philipson

By cDNA cloning and differential screening, five genes that are regulated by transforming growth factor beta (TGF beta) in mink lung epithelial cells were identified. A novel membrane protein gene, TI 1, was identified which was downregulated by TGF beta and serum in quiescent cells. In actively growing cells, the TI 1 gene is rapidly and transiently induced by TGF beta, and it is overexpressed in the presence of protein synthesis inhibitors. It appears to be related to a family of transmembrane glycoproteins that are expressed on lymphocytes and tumor cells. The four other genes were all induced by TGF beta and correspond to the genes of collagen alpha type I, fibronectin, plasminogen activator inhibitor 1, and the monocyte chemotactic cell-activating factor (JE gene) previously shown to be TGF beta regulated.


1987 ◽  
Vol 165 (1) ◽  
pp. 251-256 ◽  
Author(s):  
A E Postlethwaite ◽  
J Keski-Oja ◽  
H L Moses ◽  
A H Kang

Transforming growth factor beta (TGF-beta) is a potent chemoattractant in vitro for human dermal fibroblasts. Intact disulfide and perhaps the dimeric structure of TGF-beta is essential for its ability to stimulate chemotactic migration of fibroblasts, since reduction with 2-ME results in a marked loss of its potency as a chemoattractant. Although epidermal growth factor (EGF) appears to be capable of modulating some effects of TGF-beta, it does not alter the chemotactic response of fibroblasts to TGF-beta. Specific polyvalent rabbit antibodies to homogeneously pure TGF-beta block its chemotactic activity but has no effect on the other chemoattractants tested (platelet-derived growth factor, fibronectin, and denatured type I collagen). Since TGF-beta is secreted by a variety of neoplastic and normal cells including platelets, monocytes/macrophages, and lymphocytes, it may play a critical role in vivo in embryogenesis, host response to tumors, and the repair response that follows damage to tissues by immune and nonimmune reactions.


Sign in / Sign up

Export Citation Format

Share Document