scholarly journals Classic congenital adrenal hyperplasia and puberty

2004 ◽  
pp. U77-U82 ◽  
Author(s):  
E Charmandari ◽  
CG Brook ◽  
PC Hindmarsh

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders resulting from deficiency of one of the five enzymes required for synthesis of cortisol in the adrenal cortex. The most common form of the disease is classic 21-hydroxylase deficiency, which is characterized by decreased synthesis of glucocorticoids and often mineralocorticoids, adrenal hyperandrogenism and impaired development and function of the adrenal medulla. The clinical management of classic 21-hydroxylase deficiency is often suboptimal, and patients are at risk of developing in tandem iatrogenic hypercortisolism and/or hyperandogenism. Limitations of current medical therapy include the inability to control hyperandrogenism without employing supraphysiologic doses of glucocorticoid, hyperresponsiveness of the hypertrophied adrenal glands to adrenocorticotropic hormone (ACTH) and difficulty in suppressing ACTH secretion from the anterior pituitary. Puberty imposes increased difficulty in attaining adrenocortical suppression despite optimal substitution therapy and adherence to medical treatment. Alterations in the endocrine milieu at puberty may influence cortisol pharmacokinetics and, consequently, the handling of hydrocortisone used as replacement therapy. Recent studies have demonstrated a significant increase in cortisol clearance at puberty and a shorter half-life of free cortisol in pubertal females compared with males. Furthermore, children with classic CAH have elevated fasting serum insulin concentrations and insulin resistance. The latter may further enhance adrenal and/or ovarian androgen secretion, decrease the therapeutic efficacy of glucocorticoids and contribute to later development of the metabolic syndrome and its complications.

Author(s):  
Maria Laura Iezzi ◽  
Gaia Varriale ◽  
Luca Zagaroli ◽  
Stefania Lasorella ◽  
Marco Greco ◽  
...  

AbstractCongenital adrenal hyperplasia (CAH) due to steroid 21-hydroxylase deficiency represents a group of autosomal recessive disorders characterized by impaired cortisol production due to altered upstream steroid conversions, subclassified as classic and nonclassic forms. The genotype–phenotype correlation is possible in the most frequent case but not in all. Despite in literature many mutations are known, there is the possibility of finding a new genetic pattern in patients with CAH.


2001 ◽  
Vol 86 (6) ◽  
pp. 2701-2708 ◽  
Author(s):  
Evangelia Charmandari ◽  
Peter C. Hindmarsh ◽  
Atholl Johnston ◽  
Charles G. D. Brook

In congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, treatment with glucocorticoid and mineralocorticoid substitution is not always satisfactory. Suboptimal control is often observed in pubertal patients, despite adequate replacement doses and adherence to treatment. We investigated whether the pubertal process is associated with alterations in cortisol pharmacokinetics resulting in a loss of control of the hypothalamic-pituitary-adrenal axis. We determined the pharmacokinetics of hydrocortisone administered iv as a bolus. A dose of 15 mg/m2 body surface area was given to 14 prepubertal (median age, 9.4 yr; range, 6.1–10.8 yr), 20 pubertal (median, 13.5 yr; range, 10.6–16.8 yr), and 6 postpubertal (median, 18.2 yr; range, 17.2–20.3 yr) patients with salt-wasting CAH. All patients were on standard replacement therapy with hydrocortisone and 9α-fludrocortisone. Serum total cortisol concentrations were measured at 10-min intervals for 6 h following iv hydrocortisone bolus and analyzed using a solid-phase RIA. The serum total cortisol clearance curve was monoexponential. Mean clearance was significantly higher in the pubertal group (mean, 427.0 mL/min; sd, 133.4) compared with the prepubertal (mean, 248.7 mL/min; sd, 100.6) and postpubertal (mean, 292.4 mL/min; sd, 106.3) (one-way ANOVA, F = 9.8, P < 0.001) groups. This effect persisted after adjustment for body mass index. The mean volume of distribution was also significantly higher in the pubertal (mean, 49.5 L; sd, 12.2) than the prepubertal (mean, 27.1 L; sd, 8.4) patients but not in the postpubertal (mean, 40.8 L; sd, 16) (ANOVA, F = 15.2, P < 0.001) patients. The significance remained after correction for body mass index. There was no significant difference in mean half-life of total cortisol in prepubertal (mean, 80.2 min; sd, 19.4), pubertal (mean, 84.4 min; sd, 24.9), and postpubertal (mean, 96.7 min; sd, 9.9) patients. Similar differences between groups were observed when the pharmacokinetic parameters of free cortisol were examined. In addition, the half-life of free cortisol was significantly shorter in females compared with males (P = 0.04). These data suggest that puberty is associated with alterations in cortisol pharmacokinetics resulting in increased clearance and volume of distribution with no change in half-life. These alterations probably reflect changes in the endocrine milieu at puberty and may have implications for therapy of CAH and other conditions requiring cortisol substitution in the adolescent years.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sophia Q. Song ◽  
Andrea Gropman ◽  
Robert W. Benjamin ◽  
Francie Mitchell ◽  
Michaela R. Brooks ◽  
...  

Congenital adrenal hyperplasia is a group of autosomal recessive disorders in which enzymes in the cortisol biosynthesis pathways are disrupted by gene mutations. The most common form of congenital adrenal hyperplasia, caused by 21-hydroxylase deficiency, is characterized by decreased cortisol and aldosterone synthesis and excessive androgen production. Adult height is often compromised in affected patients. Intellectual capability remains intact in patients with congenital adrenal hyperplasia caused by 21-hydroxylase deficiency, based on previous studies. 47,XXY (KS) is a sex chromosomal aneuploidy that manifests with hypergonadotropic hypogonadism, tall stature, and variable intellectual and behavioral dysfunction. This clinical report describes an infant with 21-hydroxylase deficiency congenital adrenal hyperplasia and 47,XXY. The results of his neurodevelopmental, endocrine, neurological, and physical therapy evaluations during his first 22 months are included and were normal. This is the first published case investigating the neurodevelopmental profile of a patient with the combination of these two genetic disorders.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A159-A160
Author(s):  
Marcos D Villarreal ◽  
Viraj Desai ◽  
Pratima V Kumar

Abstract Background: Clinical manifestations of Nonclassic CAH (NCCAH) in women may range from asymptomatic to hirsutism, oligo-menorrhea, or infertility. Testicular adrenal rest tumors are common in men with classic CAH though uncommon in NCCAH. In women with classic CAH, ovarian adrenal rest tumors are even rarer. 11–58% of patients with classic CAH will have at least one adrenal nodule but the prevalence is unknown in NCCAH (1). Clinical Case: A 34-year-old Hispanic woman was seen by reproductive endocrinology for evaluation of infertility. She had been unable to conceive for the past 7 years. She was diagnosed with PCOS by her PCP. She was referred to our clinic for further workup. The patient denied galactorrhea. Laboratory evaluation revealed prolactin 49.3 (< 20.0 ng/ml), TSH 2.290 (0.5–5.0 μU/mL), fT4 1.14 (0.9–2.3 ng/dL), total testosterone 92 (15 -70 ng/dL for women), DHEAS 361 (45 -270 µg/dL), 8 AM cortisol 20.0 (5–23 μg/dL), ACTH 59.0 (6–76 pg/ml), 17-hydroxyprogesterone (17OHP) >2000 ng/dL, and A1c 5%. 24-hour urinary free cortisol was 26.4 (3.5–45 mcg/day). MRI of the pituitary did not show any adenoma. Pelvic ultrasound did not reveal any ovarian cysts. Cosyntropin stimulation test showed baseline 17OHP 1076 ng/dL, 30 minutes 8812 ng/dL, and 60 minutes 9452 ng/dL. She was begun on hydrocortisone and cabergoline. CT of the abdomen did not reveal any adrenal masses but showed mildly thickened adrenal limbs suggesting adrenal hyperplasia. A 4.5 cm exophytic enhancing mass on the left kidney was noted representing an adrenal rest tumor versus angiomyolipoma. Given the exophytic nature of the mass and increased risk of hemorrhage with angiomyolipomas greater than 4 cm, the patient was referred to urology and interventional radiology for radioembolization and possible biopsy of the mass. We are unsure if this renal mass is an angiomyolipoma or an adrenal rest tumor, which are uncommon in the kidneys. The patient was also referred for genetic counseling. Patients with CAH typically have CYP21A2 gene mutations, and the chance that a patient with NCCAH will have a child with classic CAH is reported to be 1 to 2% in two large cohort studies (2). Conclusion: This case is a reminder that evaluation of infertility/subfertility includes less common diagnoses, such as NCCAH. This genetic disorder is seen more frequently in certain ethnic groups, including Hispanics; and after diagnosis, patients should be referred to a genetic specialist. Additional abdominopelvic imaging should be considered in both men and women with a new diagnosis of NCCAH to evaluate for rare but clinically significant tumors. Reference: 1. Nordenström, A., Falhammar H. Diagnosis and management of the patient with non-classic CAH due to 21-hydroxylase deficiency Eur J Endocrinol. 2019 Mar;180(3):R127-R145.2. Merke, D, Auchus, R Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency. NEJM 2020;383:1248–61.


2021 ◽  
Author(s):  
Hedi L Claahsen – van der Grinten ◽  
Phyllis W Speiser ◽  
S Faisal Ahmed ◽  
Wiebke Arlt ◽  
Richard J Auchus ◽  
...  

Abstract Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders affecting cortisol biosynthesis. Reduced activity of an enzyme required for cortisol production leads to chronic overstimulation of the adrenal cortex and accumulation of precursors proximal to the blocked enzymatic step. The most common form of CAH is caused by steroid 21- hydroxylase deficiency due to mutations in CYP21A2. Since the last publication summarizing CAH in Endocrine Reviews in 2000 there have been numerous new developments. These include more detailed understanding of steroidogenic pathways, refinements in neonatal screening, improved diagnostic measurements utilizing chromatography and mass spectrometry coupled with steroid profiling, and improved genotyping methods. Clinical trials of alternative medications and modes of delivery have been recently completed or are under way. Genetic and cell-based treatments are being explored. A large body of data concerning long-term outcomes in patients affected by CAH, including psychosexual well-being, has been enhanced by the establishment of disease registries. This review provides the reader with current insights in congenital adrenal hyperplasia with special attention to these new developments.


2019 ◽  
Author(s):  
Claudia Oriolo ◽  
Daniela Ibarra Gasparini ◽  
Paola Altieri ◽  
Francesca Ruffilli ◽  
Francesca Corzani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document