scholarly journals CXCR6 within T-helper (Th) and T-cytotoxic (Tc) type 1 lymphocytes in Graves’ disease (GD)

2005 ◽  
Vol 152 (4) ◽  
pp. 635-643 ◽  
Author(s):  
G Aust ◽  
M Kamprad ◽  
P Lamesch ◽  
E Schmücking

Objective: In Graves’ disease (GD), stimulating anti-TSH receptor antibodies are responsible for hyperthyroidism. T-helper 2 (Th2) cells were expected to be involved in the underlying immune mechanism, although this is still controversial. The aim of this study was to examine the expression of CXCR6, a chemokine receptor that marks functionally specialized T-cells within the Th1 and T-cytotoxic 1 (Tc1) cell pool, to gain new insights into the running immune processes. Methods: CXCR6 expression was examined on peripheral blood lymphocytes (PBLs) and thyroid-derived lymphocytes (TLs) of GD patients in flow cytometry. CXCR6 cDNA was quantified in thyroid tissues affected by GD (n = 16), Hashimoto’s thyroiditis (HT; n = 2) and thyroid autonomy (TA; n = 11) using real-time reverse transcriptase PCR. Results: The percentages of peripheral CXCR6+ PBLs did not differ between GD and normal subjects. CXCR6 was expressed by small subsets of circulating T-cells and natural killer (NK) cells. CXCR6+ cells were enriched in thyroid-derived T-cells compared with peripheral CD4+ and CD8+ T-cells in GD. The increase was evident within the Th1 (CD4+ interferon-γ+ (IFN-γ+)) and Tc1 (CD8+IFN-γ+) subpopulation and CD8+ granzyme A+ T-cells (cytotoxic effector type). Thyroid-derived fibro-blasts and thyrocytes were CXCR6−. There was no significant difference between the CXCR6 mRNA levels in GD compared with HT and normal TA tissues. The lowest CXCR6 mRNA levels were obtained from thyroid nodules from TA patients and GD patients with low thyroid peroxidase autoantibody levels. Conclusions: CXCR6 was overexpressed in Th1 and Tc1 TLs compared with PBLs in GD. CXCR6 could be a marker for lymphocytes that have migrated into the thyroid and assist in the thyroid, independently of the bias of the underlying disease.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lina Geng ◽  
Jun Yang ◽  
Xinyi Tang ◽  
Huiyong Peng ◽  
Jie Tian ◽  
...  

Signaling lymphocytic activation molecule (SLAM) and SLAM-associated protein (SAP) play important role in inflammatory and autoimmune diseases. Our study is aimed at detecting the expression of SLAM and SAP in patients with Graves’ disease (GD) and analyzing the effect of SLAM/SAP on circulating blood CD4+CXCR5+Foxp3+ follicular regulatory T (Tfr) cells. The level of SAP in CD4+CXCR5+ T cells and the level of SLAM on CD19+ B cells were significantly increased in the patients with GD, but no significant difference in the level of SLAM on CD4+CXCR5+ T cells was observed between the patients with GD and the healthy controls. A decrease in the percentage of Foxp3+ cells in CD4+CXCR5+ T cells was observed following anti-SLAM treatment, but the percentages of IFN-γ+ cells, IL-4+ cells, and IL-17+ cells showed no obvious differences. The proportion of circulating Tfr cells was decreased in the patients with GD, and the proportion of circulating Tfr cells had a negative correlation with the level of SAP in CD4+CXCR5+ T cells and the levels of autoantibodies in the serum of the patients with GD. Our results suggested that the SLAM/SAP signaling pathway is involved in the decrease of circulating Tfr cells in Graves’ disease.


2021 ◽  
Author(s):  
Lina Geng ◽  
Jun Yang ◽  
Xinyi Tang ◽  
Huiyong Peng ◽  
Jie Tian ◽  
...  

Abstract Background: Signaling lymphocytic activation molecule (SLAM) and SLAM-associated protein (SAP) play important role in inflammatory and autoimmune diseases. Our study aimed to detect the expression of SLAM and SAP in patients with Graves’ disease (GD) and analyze the effect of SLAM/SAP on circulating blood CD4+CXCR5+ Foxp3+ follicular regulatory T (Tfr) cells.Methods: The expression of SLAM and SAP was assessed by flow cytometry and real-time PCR. The percentages of IFN-γ+ cells, IL-4+ cells, IL-17+ cells and Foxp3+ cells in CD4+CXCR5+ T cells and circulating CD4+CXCR5+ Foxp3+ Tfr cells after treatment with anti-SLAM and anti-CD3 antibodies were also assessed by flow cytometry. The correlations between the percentages of Tfr cells and the levels of autoantibodies as well as SAP were analyzed.Results: The level of SAP in CD4+CXCR5+ T cells and the level of SLAM on CD19+ B cells were significantly increased in the patients with GD, but no significant difference in the level of SLAM on CD4+CXCR5+ T cells was observed between the patients with GD and the healthy controls. A decrease in the percentage of Foxp3+ cells in CD4+CXCR5+ T cells was observed following anti-SLAM treatment, but the percentages of IFN-γ+ cells, IL-4+ cells and IL-17+ cells showed no obvious differences. The proportion of circulating Tfr cells was decreased in the patients with GD, and the proportion of circulating Tfr cells had a negative correlation with the level of SAP in CD4+CXCR5+ T cells and the levels of autoantibodies in the serum of the patients with GD.Conclusions: Our results indicate that the SLAM/SAP signaling pathway regulates Tfr cells, which may be involved in the pathogenesis of Graves’ disease.


2001 ◽  
Vol 194 (2) ◽  
pp. 143-154 ◽  
Author(s):  
Ronald B. Smeltz ◽  
June Chen ◽  
Jane Hu-Li ◽  
Ethan M. Shevach

Interleukin (IL)-18 has been well characterized as a costimulatory factor for the induction of IL-12–mediated interferon (IFN)-γ production by T helper (Th)1 cells, but also can induce IL-4 production and thus facilitate the differentiation of Th2 cells. To determine the mechanisms by which IL-18 might regulate these diametrically distinct immune responses, we have analyzed the role of cytokines in the regulation of IL-18 receptor α chain (IL-18Rα) expression. The majority of peripheral CD4+ T cells constitutively expressed the IL-18Rα. Upon antigen stimulation in the presence of IL-12, marked enhancement of IL-18Rα expression was observed. IL-12–mediated upregulation of IL-18Rα required IFN-γ. Activated CD4+ T cells that expressed low levels of IL-18Rα could produce IFN-γ when stimulated with the combination of IL-12 and IL-18, while CD4+ cells which expressed high levels of IL-18Rα could respond to IL-18 alone. In contrast, T cell stimulation in the presence of IL-4 resulted in a downregulation of IL-18Rα expression. Both IL-4−/− and signal transducer and activator of transcription (Stat)6−/− T cells expressed higher levels of IL-18Rα after TCR stimulation. Furthermore, activated T cells from Stat6−/− mice produced more IFN-γ in response to IL-18 than wild-type controls. Thus, positive/negative regulation of the IL-18Rα by the major inductive cytokines (IL-12 and IL-4) determines the capacity of IL-18 to polarize an immune response.


1999 ◽  
Vol 190 (8) ◽  
pp. 1147-1154 ◽  
Author(s):  
Jun-ichi Kashiwakura ◽  
Noboru Suzuki ◽  
Hiroko Nagafuchi ◽  
Mitsuhiro Takeno ◽  
Yuko Takeba ◽  
...  

Differentiation of human T cells into T helper (Th)1 and Th2 cells is vital for the development of cell-mediated and humoral immunity, respectively. However, the precise mechanism responsible for the Th1 cell differentiation is not fully clarified. We have studied the expression and function of Txk, a member of the Tec family of nonreceptor tyrosine kinases. We found that Txk expression is restricted to Th1/Th0 cells with IFN-γ producing potential. Txk transfection of Jurkat T cells resulted in a several-fold increase of IFN-γ mRNA expression and protein production; interleukin (IL)-2 and IL-4 production were unaffected. Antisense oligodeoxynucleotide of Txk specifically inhibited IFN-γ production of normal peripheral blood lymphocytes, antigen-specific Th1 clones, and Th0 clones; IL-2 and IL-4 production by the T cells was unaffected. Txk cotransfection led to the enhanced luciferase activity of plasmid (p)IFN-γ promoter/enhancer (pIFN-γ[-538])-luciferase–transfected Jurkat cells upon mitogen activation. Txk transfection did not affect IL-2 and IL-4 promoter activities. Thus, Txk specifically upregulates IFN-γ gene transcription. In fact, Txk translocated from cytoplasm into nuclei upon activation and transfection with a mutant Txk expression plasmid that lacked a nuclear localization signal sequence did not enhance IFN-γ production by the cells, indicating that nuclear localization of Txk is obligatory for the enhanced IFN-γ production. In addition, IL-12 treatment of peripheral blood CD4+ T cells enhanced the Txk expression, whereas IL-4 treatment completely inhibited it. These results indicate that Txk expression is intimately associated with development of Th1/Th0 cells and is significantly involved in the IFN-γ production by the cells through Th1 cell–specific positive transcriptional regulation of the IFN-γ gene.


2000 ◽  
Vol 191 (5) ◽  
pp. 847-858 ◽  
Author(s):  
Ryuta Nishikomori ◽  
Rolf O. Ehrhardt ◽  
Warren Strober

The differentiation of CD4+ T cells into T helper type 1 (Th1) cells is driven by interleukin (IL)-12 through the IL-12 receptor β2 (IL-12Rβ2) chain, whereas differentiation into Th2 cells is driven by IL-4, which downregulates IL-12Rβ2 chain. We reexamined such differentiation using IL-12Rβ2 chain transgenic mice. We found that CD4+ T cells from such mice were able to differentiate into Th2 cells when primed with IL-4 or IL-4 plus IL-12. In the latter case, the presence of IL-4 suppressed interferon (IFN)-γ production 10–100-fold compared with cells cultured in IL-12 alone. Finally, in studies of the ability of IL-12 to convert Th2 cells bearing a competent IL-12R to the Th1 cells, we showed that: (a) T cells bearing the IL-12Rβ2 chain transgene and primed under Th2 conditions could not be converted to Th1 cells by repeated restimulation under Th1 conditions; and (b) established Th2 clones transfected with the IL-12Rβ2 chain construct continued to produce IL-4 when cultured with IL-12. These studies show that IL-4–driven Th2 differentiation can occur in the presence of persistent IL-12 signaling and that IL-4 inhibits IFN-γ production under these circumstances. They also show that established Th2 cells cannot be converted to Th1 cells via IL-12 signaling.


2000 ◽  
Vol 192 (7) ◽  
pp. 977-986 ◽  
Author(s):  
Gregory Z. Tau ◽  
Thierry von der Weid ◽  
Binfeng Lu ◽  
Simone Cowan ◽  
Marina Kvatyuk ◽  
...  

One mechanism regulating the ability of different subsets of T helper (Th) cells to respond to cytokines is the differential expression of cytokine receptors. For example, Th2 cells express both chains of the interferon γ receptor (IFN-γR), whereas Th1 cells do not express the second chain of the IFN-γR (IFN-γR2) and are therefore unresponsive to IFN-γ. To determine whether the regulation of IFN-γR2 expression, and therefore IFN-γ responsiveness, is important for the differentiation of naive CD4+ T cells into Th1 cells or for Th1 effector function, we generated mice in which transgenic (TG) expression of IFN-γR2 is controlled by the CD2 promoter and enhancer. CD4+ T cells from IFN-γR2 TG mice exhibit impaired Th1 polarization potential in vitro. TG mice also display several defects in Th1-dependent immunity in vivo, including attenuated delayed-type hypersensitivity responses and decreased antigen-specific IFN-γ production. In addition, TG mice mount impaired Th1 responses against Leishmania major, as manifested by increased parasitemia and more severe lesions than their wild-type littermates. Together, these data suggest that the sustained expression of IFN-γR2 inhibits Th1 differentiation and function. Therefore, the acquisition of an IFN-γ–unresponsive phenotype in Th1 cells plays a crucial role in the development and function of these cells.


Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2668-2671 ◽  
Author(s):  
Raffaella Bonecchi ◽  
Silvano Sozzani ◽  
Johnny T. Stine ◽  
Walter Luini ◽  
Giovanna D’Amico ◽  
...  

Macrophage-derived chemokine (MDC) is a CC chemokine that recognizes the CCR4 receptor and is selective for T helper 2 (Th2) versus T helper 1 (Th1) cells. The present study was designed to investigate the effect of the prototypic Th2/Th1 cytokines, interleukin-4 (IL-4) and interferon-γ (IFN-γ), on the production of MDC by human monocytes. IL-4 and IL-13 caused a time-dependent (plateau at 24 hours) and concentration-dependent (EC50 2 and 10 ng/mL, respectively) increase of MDC mRNA levels in monocytes. Increased expression of MDC mRNA was associated with protein release in the supernatant. MDC expression and production induced by IL-4 and IL-13 were inhibited by IFN-γ. IFN-γ also suppressed the constitutive expression of MDC in mature macrophages and dendritic cells. These results delineate an amplification loop of polarized Th2 responses based on differential regulation of MDC production by IL-4 and IL-13 versus IFN-γ and on the selectivity of this chemokine for polarized Th2 cells. © 1998 by The American Society of Hematology.


2000 ◽  
Vol 28 (2) ◽  
pp. 212-215 ◽  
Author(s):  
M.-P. Piccinni ◽  
E. Maggi ◽  
S. Romagnani

Human CD4 T helper lymphocytes can be subdivided into at least three distinct functional subsets on the basis of their cytokine secretion profiles. One type of CD4+ lymphocyte, T helper 1 (Th1), produces interferon (IFN)-γ and tumour necrosis factor β, a second type (Th2) produces interleukin (IL)-4 and IL-5 and a third type (Th0) produces both Th1 and Th2 cytokines. The apparent paradox that embryos are not rejected by the maternal immune system despite the presence of paternal MHC histocompatibility antigens has been explained in mice by a Th2 switch at the level of the materno-fetal interface. We showed that some hormones enhanced during pregnancy can affect the development of Th1 and Th2 responses. Indeed, we found that progesterone promotes the production of IL-4 and IL-5, whereas relaxin promotes the production of IFN-γ by T-cells. In addition, we showed that leukaemia inhibitory factor (LIF), which is essential for embryo implantation, associates with Th2 cells and is upregulated by IL-4 and progesterone. We also showed that LIF is down-regulated by Th1 inducers [IL-12, IFN-γ and IFN-α]. Further-more, we found a decreased production of LIF, IL-4 and IL-10 by decidual T-cells in women with unexplained recurrent abortions in comparison with women with normal gestation at the moment of voluntary abortion. The decreased production of LIF, IL-4 and IL-10 was not found in peripheral-blood T-cells. These results suggest that the local production of LIF and/or Th2 cytokines may contribute to the maintenance of pregnancy.


Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2668-2671 ◽  
Author(s):  
Raffaella Bonecchi ◽  
Silvano Sozzani ◽  
Johnny T. Stine ◽  
Walter Luini ◽  
Giovanna D’Amico ◽  
...  

Abstract Macrophage-derived chemokine (MDC) is a CC chemokine that recognizes the CCR4 receptor and is selective for T helper 2 (Th2) versus T helper 1 (Th1) cells. The present study was designed to investigate the effect of the prototypic Th2/Th1 cytokines, interleukin-4 (IL-4) and interferon-γ (IFN-γ), on the production of MDC by human monocytes. IL-4 and IL-13 caused a time-dependent (plateau at 24 hours) and concentration-dependent (EC50 2 and 10 ng/mL, respectively) increase of MDC mRNA levels in monocytes. Increased expression of MDC mRNA was associated with protein release in the supernatant. MDC expression and production induced by IL-4 and IL-13 were inhibited by IFN-γ. IFN-γ also suppressed the constitutive expression of MDC in mature macrophages and dendritic cells. These results delineate an amplification loop of polarized Th2 responses based on differential regulation of MDC production by IL-4 and IL-13 versus IFN-γ and on the selectivity of this chemokine for polarized Th2 cells. © 1998 by The American Society of Hematology.


2003 ◽  
Vol 10 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Adam F. Cunningham ◽  
Kai-Michael Toellner

The paradigm of T helper-1 (Th-1) and Th-2 cells developing from non-committed naïve precursors is firmly established. Th1 cells are characterized by IFN production and, in mice, the selective switching to IgG2a. Conversely IL-4 production and selective switching to IgG1 and IgE characterize Th2 cells. Analysis of Th2 inductionin vitroindicates that this polarization develops gradually in T cells activated by anti-CD3 in the presence of IL-4; conversely anti-CD3 and IFN induce Th1 cells. In this report, we explore evidence that indicates that the T helper cell polarizationin vivocannot solely be explained by the cytokine environment. This is provided by studying the early acquisition of Th1 and Th2 activities during responses to a mixture of Th1 and Th2-inducing antigens. It is shown that these divergent forms of T cell help can rapidly develop in cells within a single lymph node. It is argued that early polarization to show Th-1 or Th-2 behavior can be induced by signals delivered during cognate interaction between virgin T cells and dendritic cells, in the absence of type 1 or type 2 cytokines. This contrasts with the critical role of the cytokines in reinforcing the Th-phenotype and selectively expanding T helper clones.


Sign in / Sign up

Export Citation Format

Share Document