Gastric inhibitory polypeptide (GIP) reduces human osteoclast activity by suppressing multiple signalling pathways

2021 ◽  
Author(s):  
Morten S Hansen ◽  
Kent Soe ◽  
Caroline M Gorvin ◽  
Morten Frost
2020 ◽  
pp. 151145
Author(s):  
Michèle Roy ◽  
Elizabeth Stephens ◽  
Sophie Bouhour ◽  
Sophie Roux

2018 ◽  
Vol 175 (21) ◽  
pp. 4095-4108 ◽  
Author(s):  
Natalie A Diepenhorst ◽  
Katie Leach ◽  
Andrew N Keller ◽  
Patricia Rueda ◽  
Anna E Cook ◽  
...  

Bone ◽  
2009 ◽  
Vol 44 ◽  
pp. S333 ◽  
Author(s):  
L.S. Bellesini ◽  
F.S. Oliveira ◽  
A.L. Rosa

2002 ◽  
Vol 38 ◽  
pp. 9-19 ◽  
Author(s):  
Guy S Salvesen

The ability of metazoan cells to undergo programmed cell death is vital to both the precise development and long-term survival of the mature adult. Cell deaths that result from engagement of this programme end in apoptosis, the ordered dismantling of the cell that results in its 'silent' demise, in which packaged cell fragments are removed by phagocytosis. This co-ordinated demise is mediated by members of a family of cysteine proteases known as caspases, whose activation follows characteristic apoptotic stimuli, and whose substrates include many proteins, the limited cleavage of which causes the characteristic morphology of apoptosis. In vertebrates, a subset of caspases has evolved to participate in the activation of pro-inflammatory cytokines, and thus members of the caspase family participate in one of two very distinct intracellular signalling pathways.


2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


Sign in / Sign up

Export Citation Format

Share Document