intracellular signalling pathways
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 27)

H-INDEX

28
(FIVE YEARS 4)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Rosamaria Pennisi ◽  
Maria Musarra-Pizzo ◽  
Tania Velletri ◽  
Antonino Mazzaglia ◽  
Giulia Neri ◽  
...  

In the last decade, nanotechnological progress has generated new opportunities to improve the safety and efficacy of conventional anticancer therapies. Compared with other carriers, graphene nanoplatforms possess numerous tunable functionalities for the loading of multiple bioactive compounds, although their biocompatibility is still a debated concern. Recently, we have investigated the modulation of genes involved in cancer-associated canonical pathways induced by graphene engineered with cyclodextrins (GCD). Here, we investigated the GCD impact on cells safety, the HEp-2 responsiveness to Doxorubicin (DOX) and the cancer-related intracellular signalling pathways modulated by over time exposure to DOX loaded on GCD (GCD@DOX). Our studies evidenced that both DOX and GCD@DOX induced p53 and p21 signalling resulting in G0/G1 cell cycle arrest. A genotoxic behaviour of DOX was reported via detection of CDK (T14/Y15) activation and reduction of Wee-1 expression. Similarly, we found a cleavage of PARP by DOX within 72 h of exposure. Conversely, GCD@DOX induced a late cleavage of PARP, which could be indicative of less toxic effect due to controlled release of the drug from the GCD nanocarrier. Finally, the induction of the autophagy process supports the potential recycling of DOX with the consequent limitation of its toxic effects. Together, these findings demonstrate that GCD@DOX is a biocompatible drug delivery system able to evade chemoresistance and doxorubicin toxicity.


Author(s):  
Eleonora Vertecchi ◽  
Angela Rizzo ◽  
Erica Salvati

Telomeres are crucial structures that preserve genome stability. Their progressive erosion over rounds of DNA duplication determines senescence of cells and organisms. Telomere length homeostasis is critical for cancer development then telomere maintenance mechanisms are established targets in cancer treatment. Besides telomere elongation, telomere’s dysfunction impinges on intracellular signalling pathways, in particular DNA damage signalling and repair affecting cancer cell survival and proliferation. This review summarizes and discusses about the recent findings in anti-cancer drug development targeting different “telosome” components.


Author(s):  
Wiktoria Ratajczak ◽  
Sarah D Atkinson ◽  
Catriona Kelly

AbstractTWEAK (tumor necrosis factor-like weak inducer of apoptosis) is a member of the TNF superfamily that controls a multitude of cellular events including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. TWEAK control of these events is via an expanding list of intracellular signalling pathways which include NF-κB, ERK/MAPK, Notch, EGFR and AP-1. Two receptors have been identified for TWEAK – Fn14, which targets the membrane bound form of TWEAK, and CD163, which scavenges the soluble form of TWEAK. TWEAK appears to elicit specific events based on the receptor to which it binds, tissue type in which it is expressed, specific extrinsic conditions, and the presence of other cytokines. TWEAK signalling is protective in healthy tissues, but in chronic inflammatory states become detrimental to the tissue. Consistent data show a role for the TWEAK/FN14/CD163 axis in metabolic disease, chronic autoimmune diseases, and acute ischaemic stroke. Low circulating concentrations of soluble TWEAK are predictive of poor cardiovascular outcomes in those with and without diabetes. This review details the current understanding of the TWEAK/Fn14/CD163 axis as one of the chief regulators of immune signalling and its cell-specific role in metabolic disease development and progression.


2021 ◽  
Vol 22 (17) ◽  
pp. 9210
Author(s):  
Maggie C. Evans ◽  
Rebecca A. Lord ◽  
Greg M. Anderson

The adipocyte-derived ‘satiety promoting’ hormone, leptin, has been identified as a key central regulator of body weight and fertility, such that its absence leads to obesity and infertility. Plasma leptin levels reflect body adiposity, and therefore act as an ‘adipostat’, whereby low leptin levels reflect a state of low body adiposity (under-nutrition/starvation) and elevated leptin levels reflect a state of high body adiposity (over-nutrition/obesity). While genetic leptin deficiency is rare, obesity-related leptin resistance is becoming increasingly common. In the absence of adequate leptin sensitivity, leptin is unable to exert its ‘anti-obesity’ effects, thereby exacerbating obesity. Furthermore, extreme leptin resistance and consequent low or absent leptin signalling resembles a state of starvation and can thus lead to infertility. However, leptin resistance occurs on a spectrum, and it is possible to be resistant to leptin’s metabolic effects while retaining leptin’s permissive effects on fertility. This may be because leptin exerts its modulatory effects on energy homeostasis and reproductive function through discrete intracellular signalling pathways, and these pathways are differentially affected by the molecules that promote leptin resistance. This review discusses the potential mechanisms that enable leptin to exert differential control over metabolic and reproductive function in the contexts of healthy leptin signalling and of diet-induced leptin resistance.


Planta Medica ◽  
2021 ◽  
Author(s):  
Alexander V. Sirotkin

AbstractThe present review summarizes the available knowledge concerning the action of curcumin, the best-known polyphenol among the rhizomes of Curcumas, on female reproductive processes and their dysfunctions. Curcumin affects a number of physiological processes, including female reproduction (puberty, reproductive aging, ovarian follicullogenesis and oogenesis, and fecundity). Curcumin can affect these processes via changes in the release and reception of pituitary and ovarian hormones, growth factors and cytokines. Furthermore, it can influence the response of ovarian cells to these substances and external environmental factors. Finally, curcumin can affect oxidative processes within the ovary and numerous intracellular signalling pathways related to ovarian cell proliferation and apoptosis. These effects suggest the applicability of curcumin for stimulation of female reproductive processes in vivo and in vitro, as well as for the prevention, mitigation, and treatment of various reproductive disorders from ovarian insufficiency and infertility to polycystic ovarian syndrome and ovarian cancer.


2021 ◽  
Author(s):  
Nurul Izza Ismail

Abstract KIR2DL4 is an interesting receptor expressed on the peripheral blood natural killer (pbNK) cell as it can be either activating or inhibitory depending on the amino acid residues in the domain. This model uses mathematical modelling to investigate the downstream effects of natural killer cells’ activation (KIR2DL4) receptor after stimulation by key ligand (HLA-G) on pbNK cells. Development of this large pathway is based on a comprehensive qualitative description of pbNKs’ intracellular signalling pathways leading to chemokine and cytotoxin secretion, obtained from the KEGG database (https://www.genome.jp/kegg-bin/show pathway?hsa04650). From this qualitative description we built a quantitative model for the pathway, reusing existing curated models where possible and implementing new models as needed. This large pathway consists of two published sub-models; the Ca2+ model and the NFAT model, and a newly built FCeRIγ sub-model. The full pathway was fitted to HLA-G-KIR2DL4 pathway published dataset and the model that we developed fitted well to one of two secreted cytokines. The model can be used to predict the production of IFNγ and TNFα cytokines.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Natalie Eaton-Fitch ◽  
Hélène Cabanas ◽  
Stanley du Preez ◽  
Donald Staines ◽  
Sonya Marshall-Gradisnik

Abstract Background Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a serious multifactorial disorder. The origin remains ambiguous, however reduced natural killer (NK) cell cytotoxicity is a consistent immunological feature of ME/CFS. Impaired transient receptor potential melastatin 3 (TRPM3), a phosphatidylinositol dependent channel, and impaired calcium mobilisation have been implicated in ME/CFS pathology. This investigation aimed to examine the localisation of TRPM3 at the NK cell plasma membrane and co-localisation with phosphatidylinositol 4,5-bisphosphate (PIP2). The effect of IL-2 priming and treatment using pregnenolone sulfate (PregS) and ononetin on TRPM3 co-localisation and NK cell cytotoxicity in ME/CFS patients and healthy controls (HC) was also investigated. Methods NK cells were isolated from 15 ME/CFS patients and 15 age- and sex-matched HC. Immunofluorescent technique was used to determine co-localisation of TRPM3 with the NK cell membrane and with PIP2 of ME/CFS patients and HC. Flow cytometry was used to determine NK cell cytotoxicity. Following IL-2 stimulation and treatment with PregS and ononetin changes in co-localisation and NK cell cytotoxicity were measured. Results Overnight treatment of NK cells with PregS and ononetin resulted in reduced co-localisation of TRPM3 with PIP2 and actin in HC. Co-localisation of TRPM3 with PIP2 in NK cells was significantly reduced in ME/CFS patients compared with HC following priming with IL-2. A significant increase in co-localisation of TRPM3 with PIP2 was reported following overnight treatment with ononetin within ME/CFS patients and between groups. Baseline NK cell cytotoxicity was significantly reduced in ME/CFS patients; however, no changes were observed following overnight incubation with IL-2, PregS and ononetin between HC and ME/CFS patients. IL-2 stimulation significantly enhanced NK cell cytotoxicity in HC and ME/CFS patients. Conclusion Significant changes in co-localisation suggest PIP2-dependent TRPM3 function may be impaired in ME/CFS patients. Stimulation of NK cells with IL-2 significantly enhanced cytotoxic function in ME/CFS patients demonstrating normal function compared with HC. A crosstalk exists between IL-2 and TRPM3 intracellular signalling pathways which are dependent on Ca2+ influx and PIP2. While IL-2R responds to IL-2 binding in vitro, Ca2+ dysregulation and impaired intracellular signalling pathways impede NK cell function in ME/CFS patients.


2021 ◽  
Author(s):  
Leah Schembs ◽  
Ariane Willems ◽  
Kerstin Hasenpusch-Theil ◽  
James D Cooper ◽  
Katie Whiting ◽  
...  

Defects in primary cilia, cellular antennas that controls multiple intracellular signalling pathways, underlie several neurodevelopmental disorders, but how cilia control essential steps in human brain formation remains elusive. Here, we show that cilia are present on the apical surface of radial glial cells in human foetal forebrain. Interfering with cilia signalling in human organoids by mutating the INPP5E gene leads to the formation of ventral telencephalic cell types instead of cortical progenitors and neurons. INPP5E mutant organoids also showed increased SHH signalling and cyclopamine treatment partially rescued this ventralisation. In addition, ciliary expression of SMO was increased and the integrity of the transition zone was compromised. Overall, these findings establish the importance of primary cilia for dorsal/ventral patterning in human corticogenesis, indicate a tissue specific role of INPP5E as a negative regulator of SHH signalling and have implications for the emerging roles of cilia in the pathogenesis of neurodevelopmental disorders.


2021 ◽  
Vol 22 (2) ◽  
pp. 776
Author(s):  
Elliott M. Thompson ◽  
Andrew W. Stoker

Dual specificity phosphatases (DUSPs) play a crucial role in the regulation of intracellular signalling pathways, which in turn influence a broad range of physiological processes. DUSP malfunction is increasingly observed in a broad range of human diseases due to deregulation of key pathways, most notably the MAP kinase (MAPK) cascades. Dual specificity phosphatase 26 (DUSP26) is an atypical DUSP with a range of physiological substrates including the MAPKs. The residues that govern DUSP26 substrate specificity are yet to be determined; however, recent evidence suggests that interactions with a binding partner may be required for DUSP26 catalytic activity. DUSP26 is heavily implicated in cancer where, akin to other DUSPs, it displays both tumour-suppressive and -promoting properties, depending on the context. Here we review DUSP26 by evaluating its transcriptional patterns, protein crystallographic structure and substrate binding, as well as its physiological role(s) and binding partners, its role in human disease and the development of DUSP26 inhibitors.


2020 ◽  
Vol 9 (12) ◽  
pp. R251-R260
Author(s):  
Serena Martinelli ◽  
Mario Maggi ◽  
Elena Rapizzi

Pheochromocytomas/paragangliomas (PPGLs) are rare neuroendocrine tumours linked to more than 15 susceptibility genes. PPGLs present with very different genotype/phenotype correlations. Certainly, depending on the mutated gene, and the activated intracellular signalling pathways, as well as their metastatic potential, each tumour is immensely different. One of the major challenges in in vitro research, whatever the study field, is to choose the best cellular model for that study. Unfortunately, most of the time there is not ‘a best’ cell model. Thus, in order to avoid observations that could be related to and/or dependent on a specific cell line, researchers often perform the same experiments using different cell lines simultaneously. The situation is even more complicated when there are only very few cell models obtained in different species for a disease. This is the case for PPGLs. In this review, we will describe the characteristics of the different cell lines and of mouse models, trying to understand if there is one that is more appropriate to use, depending on which aspect of the tumours one is trying to investigate.


Sign in / Sign up

Export Citation Format

Share Document