scholarly journals TNF signaling impacts glucagon-like peptide-1 expression and secretion

2018 ◽  
Vol 61 (4) ◽  
pp. 153-161 ◽  
Author(s):  
Sufang Chen ◽  
Wei Wei ◽  
Minjie Chen ◽  
Xiaobo Qin ◽  
Lianglin Qiu ◽  
...  

Numerous studies have implicated tumor necrosis factor α (TNFα) in the pathogenesis of type 2 diabetes. However, the role of its primary receptor, TNF receptor 1 (TNFR1), in homeostatic regulation of glucose metabolism is still controversial. In addition to TNFα, lymphotoxin α (LTα) binds to and activates TNFR1. Thus, TNFα and LTα together are known as TNF. To delineate the role of TNF signaling in glucose homeostasis, the present study ascertained how TNF signaling deficiency affects major regulatory components of glucose homeostasis. To this end, normal diet-fed male TNFR1-deficient mice (TNFR1−/−), TNFα/LTα/LTβ triple-deficient mice (TNF/LT∆3) and their littermate controls were subjected to intraperitoneal glucose tolerance test, insulin tolerance test and oral glucose tolerance test. The present results showed that TNFR1−/− and TNF/LT∆3 mice vs their controls had comparable body weight, tolerance to intraperitoneal glucose and sensitivity to insulin. However, their tolerance to oral glucose was significantly increased. Additionally, glucose-induced insulin secretion assessments revealed that TNFR1 or TNF/LT deficiency significantly increased oral but not intraperitoneal glucose-induced insulin secretion. Consistently, qPCR and immunohistochemistry analyses showed that TNFR1−/− and TNF/LT∆3 mice vs their controls had significantly increased ileal expression of glucagon-like peptide-1 (GLP-1), one of the primary incretins. Their oral glucose-induced secretion of GLP-1 was also significantly increased. These data collectively suggest that physiological TNF signaling regulates glucose metabolism primarily through effects on GLP-1 expression and secretion and subsequently insulin secretion.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreas Vosseler ◽  
Dongxing Zhao ◽  
Julia Hummel ◽  
Ali Gholamrezaei ◽  
Sarah Hudak ◽  
...  

AbstractParasympathetic nervous system innervates peripheral organs including pancreas, hepatic portal system, and gastrointestinal tract. It thereby contributes to the regulation of whole-body glucose metabolism especially in the postprandial state when it promotes secretion of insulin and enhances its action in major target organs. We now aimed to evaluate the effect of parasympathetic modulation on human glucose metabolism. We used slow deep breathing maneuvers to activate the parasympathetic nervous system and tested for effects on metabolism during an oral glucose tolerance test in a randomized, controlled, cross-over trial in 15 healthy young men. We used projections towards the heart as a readout for parasympathetic activity. When analyzing heart rate variability, there was a significant increase of RMSSD (root mean square of successive differences) when participants performed slow deep breathing compared to the control condition, indicating a modulation of parasympathetic activity. However, no statistically significant effects on peripheral glucose metabolism or energy expenditure after the glucose tolerance test were detected. Of note, we detected a significant association between mean heart rate and serum insulin and C-peptide concentrations. While we did not find major effects of slow deep breathing on glucose metabolism, our correlational results suggest a link between the autonomic nervous system and insulin secretion after oral glucose intake. Future studies need to unravel involved mechanisms and develop potential novel treatment approaches for impaired insulin secretion in diabetes.


2017 ◽  
Vol 6 (5) ◽  
pp. 151-158 ◽  
Author(s):  
Sylwia Płaczkowska ◽  
Izabela Kokot ◽  
Lilla Pawlik-Sobecka ◽  
Agnieszka Piwowar

Sign in / Sign up

Export Citation Format

Share Document