scholarly journals Degradation of biochemical pools labelled with [14C]glucose during culture of 8-cell and morula--early blastocyst-stage mouse embryos in vitro and in vivo

Reproduction ◽  
1984 ◽  
Vol 72 (1) ◽  
pp. 59-65 ◽  
Author(s):  
W. R. Edirisinghe ◽  
R. G. Wales ◽  
I. L. Pike
Development ◽  
1985 ◽  
Vol 88 (1) ◽  
pp. 209-217
Author(s):  
Janet L. Wiebold ◽  
Gary B. Anderson

2- to 4-cell and morula- to blastocyst-stage mouse embryos were cultured for 1 h in tritiated leucine at two specific activities and their subsequent development followed in vitro and in vivo (after transfer to recipients), respectively. 2- to 4-cell embryos that incorporated an average of 42 d.p.m. per embryo were impaired in their ability to develop to the morula and blastocyst stage. Recipients receiving morulae and blastocysts that had incorporated an average of 384 d.p.m. per embryo failed to produce young. Reduction of the specific activity improved the viability of embryos both in vitro and in vivo but development was still less than that of unlabelled embryos. Protein degradation curves were different for both 2- to 4-cell and morulato blastocyst-stage embryos labelled at the two different specific activities. Most studies using tritiated amino acids have employed higher specific activities than those used here and they may have to be reevaluated due to the possibility of radiation-induced artifacts.


Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 211-225
Author(s):  
E. Lehtonen ◽  
R. A. Badley

The immunofluorescence technique was used to detect the presence and distribution of actin, alpha-actinin, tubulin and 10 nm filament protein in early mouse embryos. Actin and alpha-actinin stainings showed a distinct concentration to a peripheral layer in the cleavage-stage blastomeres and in trophectoderm cells. Dots of fluorescence appeared in this cortical staining pattern. The distribution of tubulin staining in the blastomere cytoplasm was relatively even with apparent concentration at the perinuclear region and frequently at wide intercellular contact areas. 10 nm filament protein was distributed evenly in the blastomere cytoplasm without cortical concentration of the label. At the blastocyst stage, the trophectoderm cells in blastocyst outgrowths in vitro developed well organized cytoskeletons including both microfilament, microtubule and 10 nm filament elements. Comparable structures were not observed in blastocysts in vivo, or in late hatched blastocysts cultured in suspension. The morphogenetic significance of the observations is discussed.


2008 ◽  
Vol 56 (2) ◽  
pp. 245-253 ◽  
Author(s):  
Chang-Liang Yan ◽  
Qi-En Yang ◽  
Guang-Bin Zhou ◽  
Yun-Peng Hou ◽  
Xue-Ming Zhao ◽  
...  

The present study was designed to investigate the cryotolerance of in vitro fertilised (IVF) mouse embryos at various preimplantation developmental stages. IVF mouse embryos were vitrified by the open-pulled straw (OPS) method. After warming, embryos were morphologically evaluated and assessed by their development to blastocysts, hatched blastocysts or term. The results showed that a high proportion (93.3–100.0%) of vitrified embryos at all developmental stages were morphologically normal after recovery. The developmental rate of vitrified 1-cell embryos to blastocyst (40.0%) or hatched blastocyst (32.7%) or term (9.3%) was significantly lower than that from other stages (P < 0.05). Vitrified embryos from 2-cell to early blastocyst stage showed similar blastocyst (71.8–89.5%) and hatched blastocyst rates (61.1–69.6%) and could develop to term without a significant loss of survival compared with those of fresh embryos (P > 0.05). Vitrified 2-cell embryos showed the highest survival rate in vivo (50.6%, 88/174), compared with that from other stages (9.3–30.5%, P < 0.05). The data demonstrate that the OPS method is suitable for the cryopreservation of IVF mouse embryos from 2-cell stage to early blastocyst stage without a significant loss of survival. Embryos at the 2-cell stage had the best tolerance for cryopreservation in the present study.


Development ◽  
1970 ◽  
Vol 24 (1) ◽  
pp. 203-207
Author(s):  
Patricia Bowman ◽  
Anne McLaren

Mouse embryos (Q strain) developing in vivo from the 2-cell to the blastocyst stage showed a constant cell doubling time of about 10 h. Embryos cultured in vitro over the same period showed a rate of cleavage which was initially almost as great as in the reproductive tract, but subsequently declined to give a doubling time of about 24 h. Addition of oestrogen to the culture medium increased the diameter of blastocysts but did not increase cell number.


2005 ◽  
Vol 17 (2) ◽  
pp. 209
Author(s):  
J. Otsuka ◽  
H. Funabashi ◽  
T. Kono

Nuclear transplantation is an efficient means to investigate nucleo-cytoplasmic interactions of mammalian embryos during early development. A recent study has shown that the developmental potential of embryos is affected by the type of cytoplasm. The SAMP1/Yit mouse, an inbred strain that develops spontaneous chronic ileitis resembling Crohn's disease (Matsumoto S 1999 Bioscience Microflora 18, 1–9), has poor reproductive performance, and the developmental ability of embryos is low (unpublished data). Therefore we need to enhance productivity of the SAMP1/Yit mouse. Recently it was reported that cytoplasm of F1 mouse egg supported the development of embryos which have low developmental ability (Muggleton-Harris A et al. 1982 Nature 299, 460–462). In the present study, we examined the influences of the nucleus and cytoplasm on the development of reconstructed embryos in vitro and in vivo, using reciprocal nuclear transplantation between SAMP1/Yit and B6P1F1 (C57BL/6J × SAMP1/Yit) mouse embryos. We evaluated the developmental ability of reconstructed embryos by the development rate into blastocysts in vitro and by the rate of offspring after transfer of blastocysts to recipient mice. Pronuclear transplantation was carried out as reported previously (McGrath J and Solter D 1983 Science 220, 1300–1302). Briefly, karyoplasts from one-cell SAMP1/Yit embryos were introduced into enucleated B6P1F1 zygotes (SAMP1/B6P1F1) and fused by addition of inactivated HVJ (2700 U L−1). The other group of reconstructed embryos (B6P1F1/SAMP1) was manipulated similarly. After fusion, reconstructed embryos were cultured in drops of KSOM medium for 120 h at 37°C in 5% CO2 in humidified air. Some reconstructed and control (unmanipulated) embryos that developed to the blastocyst stage were transferred to the uteri of recipient mice. Data were compared using chi-square test; differences were considered significant at P < 0.01. The development rate of [SAMP1/B6P1F1] embryos to the blastocyst stage was significantly (P < 0.01) higher (75.0%) than that of SAMP1/Yit controls (39.1%). The rate of offspring in [SAMP1/B6P1F1] was also significantly (P < 0.01) higher (47.5%) than that of SAMP1/Yit controls (22.1%). On the other hand, [B6P1F1/SAMP1] embryos showed low developmental potential compared to B6P1F1 control embryos. These results indicate that the source of the cytoplasm strongly influences the development of reconstructed embryos containing SAMP1/Yit karyoplasts. Table 1.


Development ◽  
1973 ◽  
Vol 30 (1) ◽  
pp. 21-30
Author(s):  
E. J. Jenkinson ◽  
I. B. Wilson

When placed in serum-free medium on reconstituted collagen surfaces re-implantation mouse embryos are capable of producing characteristic trophoblast outgrowths. Previously this pattern of differentiation has been considered to be essentially dependent on the presence of serum macromolecules. Such activity is expressed only at the late blastocyst stage and is qualitatively different from the adhesive interactions between blastomeres earlier in development. The development of the properties responsible for outgrowth is intrinsic to the blastocyst, being independent of stimulation by exposure either to the uterine environment or to whole serum. The significance of these observations related to implantation control in vivo is discussed.


Development ◽  
1970 ◽  
Vol 23 (3) ◽  
pp. 693-704
Author(s):  
Patricia Bowman ◽  
Anne McLaren

About 80 % of 8-cell mouse eggs developed to the blastocyst stage in culture, whether the zona pellucida was left intact, or removed with pronase (pre-incubated and dialysed) and the eggs then cultured singly or as fused pairs. When pronase was used without prior incubation and dialysis, the success rate was reduced to 50 %. After transfer to uterine foster-mothers, 20–30 % of apparently normal blastocysts cultured with or without the zona, singly or fused, developed into live foetuses, compared with over 50 % of control blastocysts taken directly from the uterus. Some of the excess mortality of cultured embryos took place before implantation and some soon after. The foetuses derived from cultured blastocysts averaged 0·1 g lighter than those derived from control uterine blastocysts similarly transferred. No differences in the weights of the placentae were observed. Foetal and placental weights were unaffected by whether the eggs had been cultured singly or fused, implying that growth regulation of fused embryos is complete by the 17th day of gestation. The longer the eggs were maintained in culture, the lower was their viability after transfer, and the lighter were the foetuses derived from them.


2000 ◽  
Vol 8 (3) ◽  
pp. 241-287 ◽  
Author(s):  
GM Jones

The transfer of a blastocyst established the first human clinical pregnancy following in vitro fertilization (IVF). Nine years later Cohen et al. reported pregnancies resulting from the transfer of cryopreserved human blastocysts. However, it was another six years before the first report of births resulting from the transfer of human blastocysts produced in vitro appeared in the medical literature. In the intervening period clinics have opted to transfer embryos at the early cleavage stage to the uterus, despite the fact that in vivo the embryo does not enter the uterus until two to three days later at the morula to blastocyst stage of development. The viability and potential for implantation of blastocysts is high, as indicated by the finding that more than 60% of in-vivo-derived blastocysts, recovered by uterine lavage following artificial insemination of fertile donors, implant and develop into viable fetuses when transferred to recipients. This is in stark contrast to the 10–20% of in-vitro-produced embryos transferred at the early cleavage stage of development that result in a live-birth. This reduction in viability following transfer of in-vitro-derived early cleavage stage embryos may have several possible explanations: (1) a failure of implantation due to poor synchronization between the embryo and the uterine endometrium; (2) a hostile environment in the uterus for early cleavage stage embryos; (3) sub-optimal in vitro culture conditions which result in a reduction in embryo viability; (4) the assumption that all oocytes retrieved in an IVF cycle have an equal ability to develop into viable embryos; and (5) the failure to identify the most viable embryo in a cohort. Certainly, improving culture conditions and laboratory techniques for developing high quality blastocysts routinely in vitro will not only address many of the above questions but will also improve the quality and viability of earlier stages of embryo development.


Development ◽  
1983 ◽  
Vol 78 (1) ◽  
pp. 43-51
Author(s):  
Horst Spielmann ◽  
Robert P. Erickson

The recently improved firefly luciferase assay was used to determine ATP, ADP or AMP in single preimplantation mouse embryos from crosses yielding lethal t12/t12 embryos. Normal values of the three adenylate ribonucleotides were found in freshly collected 2-cell and 4-cell embryos and during in vitro culture to the blastocyst stage. A decrease in adenylate ribonucleotide content was seen in putative t12/t12 embryos only when they were degenerating.


Development ◽  
1982 ◽  
Vol 69 (1) ◽  
pp. 151-167
Author(s):  
A. J. Copp ◽  
M. J. Seller ◽  
P. E. Polani

A dye-injection technique has been used to determine the developmental stage at which posterior neuropore (PNP) closure occurs in normal and mutant curly tail mouse embryos. In vivo, the majority of non-mutant embryos undergo PNP closure between 30 and 34 somites whereas approximately 50% of all mutant embryos show delayed closure, and around 20% maintain an open PNP even at advanced stages of development. A similar result has been found for embryos developing in vitro from the headfold stage. Later in development, 50–60% of mutant embryos in vivo develop tail flexion defects, and 15–20% lumbosacral myeloschisis. This supports the view that delayed PNP closure is the main developmental lesion leading to the appearance of caudal neural tube defects in curly tail mice. The neural tube is closed in the region of tail flexion defects, but it is locally overexpanded and abnormal in position. The significance of these observations is discussed in relation to possible mechanisms of development of lumbosacral and caudal neural tube defects. This paper constitutes the first demonstration of the development of a genetically induced malformation in vitro.


Sign in / Sign up

Export Citation Format

Share Document