Open-pulled straw (OPS) vitrification of in vitro fertilised mouse embryos at various stages

2008 ◽  
Vol 56 (2) ◽  
pp. 245-253 ◽  
Author(s):  
Chang-Liang Yan ◽  
Qi-En Yang ◽  
Guang-Bin Zhou ◽  
Yun-Peng Hou ◽  
Xue-Ming Zhao ◽  
...  

The present study was designed to investigate the cryotolerance of in vitro fertilised (IVF) mouse embryos at various preimplantation developmental stages. IVF mouse embryos were vitrified by the open-pulled straw (OPS) method. After warming, embryos were morphologically evaluated and assessed by their development to blastocysts, hatched blastocysts or term. The results showed that a high proportion (93.3–100.0%) of vitrified embryos at all developmental stages were morphologically normal after recovery. The developmental rate of vitrified 1-cell embryos to blastocyst (40.0%) or hatched blastocyst (32.7%) or term (9.3%) was significantly lower than that from other stages (P < 0.05). Vitrified embryos from 2-cell to early blastocyst stage showed similar blastocyst (71.8–89.5%) and hatched blastocyst rates (61.1–69.6%) and could develop to term without a significant loss of survival compared with those of fresh embryos (P > 0.05). Vitrified 2-cell embryos showed the highest survival rate in vivo (50.6%, 88/174), compared with that from other stages (9.3–30.5%, P < 0.05). The data demonstrate that the OPS method is suitable for the cryopreservation of IVF mouse embryos from 2-cell stage to early blastocyst stage without a significant loss of survival. Embryos at the 2-cell stage had the best tolerance for cryopreservation in the present study.

2008 ◽  
Vol 20 (1) ◽  
pp. 169 ◽  
Author(s):  
C. E. McHughes ◽  
G. K. Springer ◽  
L. D. Spate ◽  
R. Li ◽  
R. J. Woods ◽  
...  

Identification of transcripts that are present at key development stages of preimplantation embryos is critical for a better understanding of early embryogenesis. To that end, this project had two goals. The first was to characterize the relative abundance of multiple transcripts during several developmental stages, including metaphase II-stage oocytes (MPII), and 2-cell-stage (2-cell), precompact morula (PCM), and in vitro-produced blastocyst-stage (IVTBL) embryos. The second was to characterize differences in the relative abundance of transcripts present in in vivo- (IVVBL), in vitro-, and nuclear transfer-produced (NTBL) blastocysts. It was our hypothesis that the identification of differentially represented transcripts from these stages would reveal not only developmentally important genes, but also genes that might be aberrantly expressed due to embryo production techniques. Individual clusters from a large bovine EST project (http://genome.rnet.missouri.edu/Bovine/), which focused on female reproductive tissues and embryos, were compared using Fisher's exact test weighted by number of transcripts per tissue by gene (SAS PROC FREQ; SAS Institute, Inc., Cary, NC, USA). Of the 3144 transcripts that were present during embryogenesis, 125 were found to be differentially represented (P < 0.01) in at least one pairwise comparison (Table 1). Some transcripts found to increase in representation from the MPII to the 2-cell stage include protein kinases, PRKACA and CKS1, as well as the metabolism-related gene, PTTG1. These same transcripts were also found to decrease in representation from the 2-cell to the PCM stage. RPL15 (translation) and FTH1 (immune function) were both more highly represented in the PCM than in the 2-cell stage. From PCM to IVTBL, we saw an increase in RPS11, another translation-related transcript. When comparing blastocyst-stage embryos from different production techniques, several transcripts involved in energy production (e.g., COX7B and COX8A) were found to be more highly represented in the NTBL than in the IVTBL. COX8A was also more highly represented in the IVVBL than in the IVTBL. By investigating these differentially represented transcripts, we will be able to better understand the developmental implications of embryo manipulation. We may also be able to better develop reproductive technologies that lead to in vitro- and nuclear transfer-derived embryos which more closely follow a normal program of development. Table 1. Differentially represented transcripts between developmental stages


1996 ◽  
Vol 8 (6) ◽  
pp. 945 ◽  
Author(s):  
RJ Partridge ◽  
HJ Leese

Bovine embryos produced in vitro from the putative zygote stage to the blastocyst stage, and blastocysts freshly flushed from the uterus, were cultured in a physiological mixture of amino acids. Depletion of amino acids from the medium and, in a few cases, their appearance, was measured by high performance liquid chromatography. Amino acids were depleted at widely differing rates. The depletion of amino acids was higher when embryos at later developmental stages were cultured, implying an increase in amino acid requirement with development. Threonine was the only amino acid to be depleted at all stages of development; depletion increased from 0.18 +/- 0.07 pmol embryo-1 h-1 at the putative zygote stage to 1.96 +/- 0.49 pmol embryo-1 h-1 at the blastocyst stage. Glutamine was depleted at the putative zygote stage and the 4-cell stage (0.76 +/- 0.05 and 0.94 +/- 0.10 pmol embryo-1 h-1 respectively), but was not significantly depleted at the later stages. Alanine was the only amino acid that appeared consistently in the medium and its production increased progressively throughout development. Aspartate, glutamate, threonine and lysine were depleted significantly by blastocysts derived both in vitro and in vivo; the embryos in vivo also depleted arginine, phenylalanine, isoleucine and tyrosine. These results indicate that individual amino acids are depleted at different rates by bovine preimplantation embryos and suggest that amino acid requirements change during development.


Zygote ◽  
2013 ◽  
Vol 22 (4) ◽  
pp. 540-548 ◽  
Author(s):  
Li-Bing Ma ◽  
Xiao-Ying He ◽  
Feng-Mei Wang ◽  
Jun-Wei Cao ◽  
Teng Cheng

SummarySomatic cell nuclear transfer can be used to produce embryonic stem (ES) cells, cloned animals, and can even increase the population size of endangered animals. However, the application of this technique is limited by the low developmental rate of cloned embryos, a situation that may result from abnormal expression of some zygotic genes. In this study, sheep–sheep intra-species cloned embryos, goat–sheep inter-species cloned embryos, or sheep in vitro fertilized embryos were constructed and cultured in vitro and the developmental ability and expression of three pluripotency genes, SSEA-1, Nanog and Oct4, were examined. The results showed firstly that the developmental ability of in vitro fertilized embryos was significantly higher than that of cloned embryos. In addition, the percentage of intra-species cloned embryos that developed to morula or blastocyst stages was also significantly higher than that of the inter-species cloned embryos. Secondly, all three types of embryos expressed SSEA-1 at the 8-cell and morula stages. At the 8-cell stage, a higher percentage of in vitro fertilized embryos expressed SSEA-1 than occurred for cloned embryos. However, at the morula stage, all detected embryos could express SSEA-1. Thirdly, the three types of embryos expressed Oct4 mRNA at the morula and blastocyst stages, and embryos at the blastocyst stage expressed Nanog mRNA. The rate of expression of Oct4 and Nanog mRNA at these developmental stages was higher in in vitro fertilized embryos than in cloned embryos. These results indicated that, during early development, the failure to reactivate some pluripotency genes maybe is a reason for the low cloning efficiency found with cloned embryos.


2004 ◽  
Vol 16 (2) ◽  
pp. 246 ◽  
Author(s):  
D. Tesfaye ◽  
K. Wimmers ◽  
M. Gilles ◽  
S. Ponsuksili ◽  
K. Schellander

A comparative analysis of mRNA expression patterns between embryos produced under different in vitro and in vivo culture systems allows the isolation of genes associated with embryo quality and investigation of the effect of culture environment on the embryonic gene expression. In this study, expression analysis of four known (PSCD2, TCF7L2, NADH-subunit and PAIP1) genes and one novel transcript, derived from differential display PCR, was performed in in vitro (Ponsuksili et al., 2002, Theriogenology 57, 1611–1624) or in vivo- (Moesslacher et al., 2001 Reprod. Dom. Anim. 32, 37) produced bovine 2-, 4-, 8-, 16-cell, morula and blastocyst stage embryos using real time PCR technology. Poly(A) RNA was isolated from four separate individual embryos from each developmental stage and embryo group (in vitro or in vivo) using Dynabeads mRNA kit (Dynal, Oslo, Norway). After reverse transcription, quantitative PCR was performed with sequence specific primers in an ABI PRISM® 7000 Sequence Detection System instrument (Applied Biosystems, Foster City, CA, USA) using SYBR® Green as a double-strand DNA-specific fluorescent dye. Standard curves were generated for target and endogenous genes using serial dilutions of plasmid DNA. Final quantification was done using the relative standard curve method, and results were reported as relative expression or n-fold difference to the calibrator cDNA (i.e., the blastocyst stage) after normalization with the endogenous control (Histone2a). Data were analyzed using SAS version 8.0 (SAS Institute Inc., NC, USA) software package. Analysis of variance was performed with the main effects being the developmental stage and embryo source (in vitro or in vivo) and their interactions followed by multiple pairwise comparisons using Tukey’s test. No significant difference was observed in the relative abundance of the PSCD2 gene between the two embryo groups. However, its expression was higher (20-fold) (P&lt;0.05) at the 8-cell stage than the other developmental stages among in vitro embryos. Higher expression (P&lt;0.05) of NADH-subunit mRNA was detected in vivo than in vitro at the 2-cell stage of development. The TCF7L2 mRNA was expressed in the in vitro embryos but not in the in vivo ones. PAIP1 mRNA was higher (P&lt;0.05) in in vitro (1500-fold) than in the in vivo embryos (500-fold) at the 2-cell developmental stage compared to the calibrator. The novel transcript was also detected at higher level (P&lt;0.05) in the in vitro than in the in vivo embryos at the 2-cell stage of development. However, the PAIP1 and the novel transcript showed no significant difference in their expression between the two embryo groups beyond the 2-cell developmental stage. Both PAIP1 and the novel transcript were detected only up to 8-cell stage in both embryo groups, suggesting their maternal origin. In conclusion, the variations in the expression of studied genes between in vitro and in vivo may reflect the effect of the two culture systems on the transcriptional activity of early embryos.


Development ◽  
1985 ◽  
Vol 88 (1) ◽  
pp. 209-217
Author(s):  
Janet L. Wiebold ◽  
Gary B. Anderson

2- to 4-cell and morula- to blastocyst-stage mouse embryos were cultured for 1 h in tritiated leucine at two specific activities and their subsequent development followed in vitro and in vivo (after transfer to recipients), respectively. 2- to 4-cell embryos that incorporated an average of 42 d.p.m. per embryo were impaired in their ability to develop to the morula and blastocyst stage. Recipients receiving morulae and blastocysts that had incorporated an average of 384 d.p.m. per embryo failed to produce young. Reduction of the specific activity improved the viability of embryos both in vitro and in vivo but development was still less than that of unlabelled embryos. Protein degradation curves were different for both 2- to 4-cell and morulato blastocyst-stage embryos labelled at the two different specific activities. Most studies using tritiated amino acids have employed higher specific activities than those used here and they may have to be reevaluated due to the possibility of radiation-induced artifacts.


Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 211-225
Author(s):  
E. Lehtonen ◽  
R. A. Badley

The immunofluorescence technique was used to detect the presence and distribution of actin, alpha-actinin, tubulin and 10 nm filament protein in early mouse embryos. Actin and alpha-actinin stainings showed a distinct concentration to a peripheral layer in the cleavage-stage blastomeres and in trophectoderm cells. Dots of fluorescence appeared in this cortical staining pattern. The distribution of tubulin staining in the blastomere cytoplasm was relatively even with apparent concentration at the perinuclear region and frequently at wide intercellular contact areas. 10 nm filament protein was distributed evenly in the blastomere cytoplasm without cortical concentration of the label. At the blastocyst stage, the trophectoderm cells in blastocyst outgrowths in vitro developed well organized cytoskeletons including both microfilament, microtubule and 10 nm filament elements. Comparable structures were not observed in blastocysts in vivo, or in late hatched blastocysts cultured in suspension. The morphogenetic significance of the observations is discussed.


2006 ◽  
Vol 18 (2) ◽  
pp. 248
Author(s):  
S.-G. Lee ◽  
C.-H. Park ◽  
D.-H. Choi ◽  
H.-Y. Son ◽  
C.-K. Lee

Use of blastocysts produced in vitro would be an efficient way to generate embryonic stem (ES) cells for the production of transgenic animals and the study of developmental gene regulation. In pigs, the morphology and cell number of in vitro-produced blastocysts are inferior to these parameters in their in vivo counterparts. Therefore, establishment of ES cells from blastocysts produced in vitro might be hindered by poor embryo quality. The objective of this study was to increase the cell number of blastocysts derived by aggregating 4–8-cell stage porcine embryos produced in vitro. Cumulus–oocyte complexes were collected from prepubertal gilt ovaries, and matured in vitro. Embryos at the 4–8-cell stage were produced by culturing embryos for two days after in vitro fertilization (IVF). After removal of the zona pellucida with acid Tyrode’s solution, one (1X), two (2X), and three (3X) 4–8-cell stage embryos were aggregated by co-culturing them in aggregation plates followed by culturing to the blastocyst stage. After 7 days, the developmental ability and the number of cells in aggregated embryos were determined by staining with Hoechst 33342 and propidium iodide. The percentage of blastocysts was higher in both 2X and 3X aggregated embryos compared to that of 1X and that of intact controls (Table 1). The cell number of blastocysts also increased in aggregated embryos compared to that of non-aggregated (1X) embryos and controls. This result suggests that aggregation might improve the quality of in vitro-fertilized porcine blastocysts by increasing cell numbers, thus becoming a useful resource for isolation and establishment of porcine ES cells. Further studies are required to investigate the quality of the aggregated embryos in terms of increasing the pluripotent cell population by staining for Oct-4 and to apply improved aggregation methods in nuclear-transferred (NT) porcine embryos. Table 1. Development, cell number, and ICM ratio of aggregated porcine embryos


1995 ◽  
Vol 29 (3) ◽  
pp. 320-326 ◽  
Author(s):  
Th. Rülicke ◽  
P. Autenried

Approximately 18% of cryopreserved 2-cell mouse embryos of 26 different batches showed various degrees of morphological damage after the freeze-thaw process. Normal and damaged morphology were assessed by light microscopy and the ability of an embryo to develop in vitro to a blastocyst, or to develop to term, after transfer to foster mothers. Using vital stains such as Fluorescein-diacetate (FDA) and 4',6-Diamidino-2-Phenylindole (DAPI) it was found that in approximately 82% of the cases, both of the 2 blastomeres of the cryopreserved embryos survived the freeze-thaw process; in 10% only one cell survived the process; and in 8% none survived. Normally, only intact 2-cell embryos are considered for transfer. Here it was shown that over 60% of the partially damaged embryos developed in vitro to the blastocyst stage and, of those, 26% developed to term after transfer to suitable foster mothers. Although the inner cell mass (ICM) appeared to remain smaller during culture after the transfer of partially damaged 2-cell stage embryos, no difference during gestation period was found compared with intact embryos.


2010 ◽  
Vol 22 (1) ◽  
pp. 238
Author(s):  
I. P. Emanuelli ◽  
B. F. Agostinho ◽  
M. P. M. Mancini ◽  
C. M. Barros ◽  
M. F. G. Nogueira

Embryonic chimeras have been used as a tool to understand embryogenesis and organogenesis, as well as to prove, in vivo, the pluripotency of the embryonic stem cells. One of the techniques used to obtain embryonic chimeras is aggregation, which can be performed with intact or half-embryos and in different stages of the development, produced by in vivo or in vitro systems and in different wells. However, its efficiency tends to reduce when advanced stages, such as morulae and blastocysts, are used. The aim of this work was to evaluate the effect of the treatment with an agglutinating agent (phytohemagglutinin-L; PHA) in the percentage of chimeras produced with IVF bovine embryos. Bovine ovaries (from abattoir) were used to obtain 270 COC that were matured in drops (90 μL) of TCM-199 bicarbonate medium, supplemented with 10% of FCS, and incubated in vitro for 22 to 24 h. The fertilization occurred in TALP-IVF medium, and the COC were maintained in the incubator for 18 h. After fertilization, the presumptive zygotes were transferred to SOF culture medium to in vitro culture. In vitro maturation, fertilization, and culture were performed under 38.5°C, 5% CO2 in air and saturated humidity. The chimerism by aggregation was tested between 2 intact (zona-free) 8- to 16-cell stage embryos in the presence (G1, n = 16) or absence of PHA (G2, n = 14) and between one half-morula and one half-blastocyst with (G3, n = 15) or without PHA (G4, n = 12). The embryos in groups G1 and G3 were treated with PHA in a concentration of 500 μLg mL-1 for 3 min. After PHA treatment, the pairs of embryos were allocated in wells, under previously described culture conditions, until expanded blastocyst stage could be observed (Day 7 of culture). At 24 h of culture, embryonic aggregation pairs were first evaluated to detect only cohesive masses of cells. The results (chimerism rate) were 62.5%, 42.9%, 40.0%, and 25.0%, respectively, for groups G1, G2, G3, and G4. There were no significant differences neither among groups (chi-square, P = 0.252) nor between G1 and G2 (P = 0.464), G3, and G4 (P = 0.683; Fisher’s exact test). Main effects as use of PHA (G1 + G3 v. G2 + G4, P = 0.284) and stage of embryos (G1 + G2 v. G3 + G4, P = 0.183; Fisher’s exact test) were not statistically significant. However, when all groups were compared, the power of the performed test (0.354) was below the desired power of 0.800 (i.e. one must be cautious in over-interpreting the lack of difference among them). In the conditions of this study, it was concluded that the treatment with PHA did not increase the rate of aggregation in the embryonic chimera production, even for half-embryos in advanced stage of development (morulae and blastocysts). Granted by FAPESP, Brazil: 06/06491-2 and 07/07705-9 (MFGN) and 07/04291-9 (MPMM).


2013 ◽  
Vol 25 (1) ◽  
pp. 256 ◽  
Author(s):  
A. Al Naib ◽  
S. Mamo ◽  
P. Lonergan

Successful establishment and maintenance of pregnancy requires optimum conceptus-maternal cross talk. Despite significant progress in our understanding of the temporal changes in the transcriptome of the uterine endometrium, we have only a rudimentary knowledge of the genes and pathways governing growth and development of the bovine conceptus. A recent RNA sequencing study from our group (Mamo et al. 2011 Biol. Reprod. 85, 1143–1151) described the global transcriptome profile of the bovine conceptus at 5 key stages of its pre- and peri-implantation growth (Days 7, 10, 13, 16, and 19) using RNA sequencing techniques. One cluster of genes (n = 1680 transcripts) was preferentially upregulated at Day 7 and subsequently downregulated, suggesting that these genes might be markers of blastocyst formation. The objective of this study was to characterise the pattern of expression of these genes before Day 7 (i.e. from the zygote to blastocyst stage). The list of genes was submitted to DAVID (Database for Annotation, Visualisation, and Integrated Discovery) to take advantage of available ontology information contained therein. The expression of 9 genes belonging to ontologies specifically related to embryo developmental (GINS1, TAF8, ESRRB, NCAPG2, SP1, XAB2, CDC2L1, MSX1, and AQP3) plus Na/K ATPase, a gene previously known to be involved in blastocoe formation, was studied by quantitative real-time PCR (QPCR) in 6 replicate pools of 5 embryos produced by maturation, fertilization, and embryo culture in vitro. Stages studies included immature and mature oocyte, zygote, 2- cell, 4-cell, 8-cell, 16-cell, morula, blastocyst, and hatched blastocyst. In addition, in vivo derived Day 13 and Day 16 embryos were included as controls to confirm down-regulation after Day 7. Data were analysed using the GLM procedure of SAS. The QPCR expression data supported the RNA Seq data in that expression of all transcripts was downregulated after the blastocyst stage. Expression before the blastocyst stage was characterised by 1 of 3 broad patterns: (1) the expression was of maternal origin where the expression was very high up to 8-cell stage and decreased subsequently (MSX1), (2) the expression was of embryonic origin being low up to the 8-cell stage and increasing thereafter (TAF8, ESRRB, AQP3, and Na/K ATPase), or (3) static or decreased expression from oocyte to the maternal-zygotic transition followed by increased expression from the 16-cell stage (GINS1, NCAPG2, SP1, XAB2, and CDC2L1). In conclusion, the genes identified in this cluster, despite having different patterns of expression before the blastocyst stage, may represent markers of blastocyst formation in cattle given their downregulation subsequently. Supported by Science Foundation Ireland (07/SRC/B1156).


Sign in / Sign up

Export Citation Format

Share Document