Defect structure in bulk nanomaterials processed by severe plastic deformation

2012 ◽  
pp. 41-83 ◽  
Author(s):  
Jenő Gubicza
2015 ◽  
Vol 5 ◽  
pp. 43-54 ◽  
Author(s):  
Ruslan Z. Valiev

Nanostructuring of metals and alloys by severe plastic deformation techniques is an effective way of enhancing their mechanical and functional properties. The features of the nanostructured materials produced by severe plastic deformation (SPD) are stipulated by forming of ultrafine-sized grains as well as by the state of grain boundaries. The concept of grain boundary (GB) design of ultrafine-grained metals and alloys is developed for enhancement of their properties by tailoring grain boundaries of different types (low-angle and high-angle ones, special and random, equilibrium and nonequilibrium) and formation of grain boundary segregations and precipitations by SPD processing. The paper presents experimental data demonstrating the super-strength and “positive” slope of the Hall-Petch relation when passing from micro-to nanostructured state in a number of metallic materials subjected to severe plastic deformation. The nature of the superior strength is associated with new strengthening mechanisms and the difficulty of generation of dislocations from grain boundaries with segregations. This new approach is used for achieving the enhanced strength in several commercial Al and Ti alloys as well as steels subjected to SPD processing.


2004 ◽  
Vol 443-444 ◽  
pp. 99-102
Author(s):  
Nariman A. Enikeev ◽  
Igor V. Alexandrov ◽  
Ruslan Valiev

A computer simulation-based approach has been developed in order to reveal grain boundary defect structure of nanomaterials, which is described in terms of extrinsic grain boundary dislocations. On the basis of comparative analysis of numerically obtained results to experimental data, the defect structure parameters of nanostructured materials produced by severe plastic deformation have been evaluated.


2001 ◽  
Vol 378-381 ◽  
pp. 457-462 ◽  
Author(s):  
A.R. Kilmametov ◽  
Ke Zhang ◽  
Igor V. Alexandrov ◽  
R.M. Mazitov ◽  
K. Lu

2018 ◽  
Vol 1 (1) ◽  
pp. 77-90
Author(s):  
Walaa Abdelaziem ◽  
Atef Hamada ◽  
Mohsen A. Hassan

Severe plastic deformation is an effective method for improving the mechanical properties of metallic alloys through promoting the grain structure. In the present work, simple cyclic extrusion compression technique (SCEC) has been developed for producing a fine structure of cast Al-1 wt. % Cu alloy and consequently enhancing the mechanical properties of the studied alloy. It was found that the grain structure was significantly reduced from 1500 µm to 100 µm after two passes of cyclic extrusion. The ultimate tensile strength and elongation to failure of the as-cast alloy were 110 MPa and 12 %, respectively. However, the corresponding mechanical properties of the two pass CEC deformed alloy are 275 MPa and 35%, respectively. These findings ensure that a significant improvement in the grain structure has been achieved. Also, cyclic extrusion deformation increased the surface hardness of the alloy by 49 % after two passes. FE-simulation model was adopted to simulate the deformation behavior of the material during the cyclic extrusion process using DEFORMTM-3D Ver11.0. The FE-results revealed that SCEC technique was able to impose severe plastic strains with the number of passes. The model was able to predict the damage, punch load, back pressure, and deformation behavior.


Author(s):  
Андрей Дмитриевич Бухтеев ◽  
Виктория Буянтуевна Бальжиева ◽  
Анна Романовна Тарасова ◽  
Фидан Гасанова ◽  
Светлана Викторовна Агасиева

В данной статье рассматривается применение и технологии получения наноструктурированных поверхностей. Рассмотрены такие методы как компактирование порошков (изостатическое прессование, метод Гляйтера), интенсивная пластическая деформация (угловое кручение, равноканальное угловое прессование, обработка давлением многослойных композитов) и модификация поверхности (лазерная обработка, ионная бомбардировка). This article discusses the application and technology for obtaining nano-structured surfaces. Methods such as compaction of powders (isostatic pressing, Gleiter method), severe plastic deformation (angular torsion, equal-channel angular pressing, pressure treatment of multilayer composites) and surface modification (laser treatment, ion bombardment) are considered.


Sign in / Sign up

Export Citation Format

Share Document