TECHNOLOGIES FOR MANUFACTURING NANOSTRUCTURED SURFACES

Author(s):  
Андрей Дмитриевич Бухтеев ◽  
Виктория Буянтуевна Бальжиева ◽  
Анна Романовна Тарасова ◽  
Фидан Гасанова ◽  
Светлана Викторовна Агасиева

В данной статье рассматривается применение и технологии получения наноструктурированных поверхностей. Рассмотрены такие методы как компактирование порошков (изостатическое прессование, метод Гляйтера), интенсивная пластическая деформация (угловое кручение, равноканальное угловое прессование, обработка давлением многослойных композитов) и модификация поверхности (лазерная обработка, ионная бомбардировка). This article discusses the application and technology for obtaining nano-structured surfaces. Methods such as compaction of powders (isostatic pressing, Gleiter method), severe plastic deformation (angular torsion, equal-channel angular pressing, pressure treatment of multilayer composites) and surface modification (laser treatment, ion bombardment) are considered.

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1621-1626
Author(s):  
HYOUNG SEOP KIM

The technique of severe plastic deformation (SPD) enables one to produce metals and alloys with an ultrafine grain size of about 100 nm and less. As the mechanical properties of such ultrafine grained materials are governed by the plastic deformation during the SPD process, the understanding of the stress and strain development in a workpiece is very important for optimizing the SPD process design and for microstructural control. The objectives of this work is to present a constitutive model based on the dislocation density and dislocation cell evolution for large plastic strains as applied to equal channel angular pressing (ECAP). This paper briefly introduces the constitutive model and presents the results obtained with this model for ECAP by the finite element method.


2019 ◽  
Vol 945 ◽  
pp. 579-584
Author(s):  
Maria Z. Borisova

The influence of severe plastic deformation on structural materials has been actively studied in recent years. Undoubtedly is the positive influence of this method on strength characteristics of materials. In addition, it is very interesting to influence of the severe plastic deformation on the mechanisms of fracture. One of the most common methods of severe plastic deformation is equal-channel angular pressing (ECAP). In this paper, the influence of different modes of ECAP on the strength of structural steel was studied. Also, the destruction of steel at different test temperatures was studied in detail. It is shown that the ECAP increases the strength of steel almost twice, but the plasticity of steel is reduced, which leads to fragility. Quenching can remove the negative impact of the ECAP on toughness of the steel and will increase the impact strength several times.


2007 ◽  
Vol 539-543 ◽  
pp. 2787-2792 ◽  
Author(s):  
Minoru Umemoto ◽  
Yoshikazu Todaka ◽  
Jin Guo Li ◽  
Koichi Tsuchiya

Formation of nanocrystalline structure by severe plastic deformation has studied extensively. Although ultra fine grained structure (grain size larger than 100 nm) had been obtained in many processes such as heavy cold rolling, equal channel angular pressing (ECAP) or accumulative roll bonding (ARB), the formation of nano grained structure (< 100 nm) is limited to processes such as ball milling, shot peening or drilling. In the present study, high pressure torsion (HPT) deformation and drilling were carried out to understand the conditions necessary to obtain nano grained structure in steels. The results of HPT experiments in pure Fe showed that HPT has superior ability of strengthening and grain refinement probably due to a strain gradient but the saturation of grain refinement occurs before reaching nano grained structure. Drilling experiments in high carbon martensitic steel revelaed that nano grained ferrite forms at the drilled hole surface only when the transformation from ferrite to austenite takes place during drilling. Considering various other processes by which nano grained ferrite was produced, it is proposed that heavy strains with large strain gradients together with dynamic transformation are necessary to reach nano grained ferrite structure.


2019 ◽  
Vol 803 ◽  
pp. 22-26
Author(s):  
G.K. Manjunath ◽  
K. Udaya Bhat ◽  
G.V. Preetham Kumar

In the present work, Al-Zn-Mg alloy having highest zinc content was deformed by one of the severe plastic deformation (SPD) technique, equal channel angular pressing (ECAP) and effect of ECAP on the microstructure evolution and the wear properties were studied. ECAP was performed in a split die and the channels of the die are intersecting at an angle of 120º. ECAP was attempted at least possible temperature and the alloy was successfully ECAPed at 423 K. Below this temperature samples were failed in the first pass itself. After ECAP, significant drop in the grain size was reported. Also, ECAP leads to significant raise in the microhardness of the alloy. Predominantly, after ECAP, upsurge in the wear resistance of the alloy was noticed. To figure out the response of ECAP on the wear properties of the alloy; worn surfaces of the wear test samples were analyzed in SEM.


2012 ◽  
Vol 735 ◽  
pp. 353-358 ◽  
Author(s):  
Anna Mogucheva ◽  
Diana Tagirova ◽  
Rustam Kaibyshev

The superplastic behaviour of an Al-4.6%Mg-0.35%Mn-0.2%Sc-0.09%Zr alloy was studied in the temperature range 250-500°C at strain rates ranging from 10-4 to 10-1 s-1. The AA5024 was subjected to equal channel angular pressing (ECAP) at 300°C up to ~12. The highest elongation-to-failure of ∼3300% was attained at a temperature of 450°C and an initial strain rate of 5.6×10-1 s-1. Regularities of superplastic behaviour of the 5024 aluminium alloy are discussed.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2241 ◽  
Author(s):  
Garima Kapoor ◽  
Tibor Kvackaj ◽  
Anita Heczel ◽  
Jana Bidulská ◽  
Róbert Kočiško ◽  
...  

A Cu–1.1%Cr–0.04%Zr (wt.%) alloy was processed by severe plastic deformation (SPD) using the equal channel angular pressing (ECAP) technique at room temperature (RT). It was found that when the number of passes increased from one to four, the dislocation density significantly increased by 35% while the crystallite size decreased by 32%. Subsequent rolling at RT did not influence considerably the crystallite size and dislocation density. At the same time, cryorolling at liquid nitrogen temperature yielded a much higher dislocation density. All the samples contained Cr particles with an average size of 1 µm. Both the size and fraction of the Cr particles did not change during the increase in ECAP passes and the application of rolling after ECAP. The hardness of the severely deformed Cu alloy samples can be well correlated to the dislocation density using the Taylor equation. Heat treatment at 430 °C for 30 min in air caused a significant reduction in the dislocation density for all the deformed samples, while the hardness considerably increased. This apparent contradiction can be explained by the solute oxygen hardening, but the annihilation of mobile dislocations during annealing may also contribute to hardening.


2019 ◽  
Vol 3 (2) ◽  
pp. 36
Author(s):  
Yu Bai ◽  
Xiaoqing Zhang ◽  
Kenong Xia

Equal channel angular pressing (ECAP) has been shown to be a promising method for producing biocomposites from wood particles. However, severe plastic deformation during ECAP would cause considerable cracking when consolidation is carried out without a binder. In this study, the processing conditions were investigated for ECAP of hardwood particles into bulk biocomposites without any additives. Crack formation and wood cell deformation were examined in conjunction with thermal stability and crystallinity of the biocomposites. In comparison with hot pressing without severe shearing, a decrease in crystallinity and severe deformation of wood cells occurred during ECAP. Improved processability and homogeneous deformation would occur at high ECAP temperature (e.g., 210 °C) or low ECAP speed (e.g., 10 mm/min), leading to reduced crack formation in the ECAP-produced biocomposites. Despite its tendency to cause periodic cracking, effective plastic deformation in the regions between cracks was shown to improve interparticle binding. Ongoing research points to the potential achievement of crack-free hardwood (HW) consolidated without a binder, leading to significantly enhanced strength.


2016 ◽  
Vol 1818 ◽  
Author(s):  
M. A. González-Lozano ◽  
P. Ponce-Peña ◽  
M.A. Escobedo-Bretado ◽  
R.H. Lara-Castro ◽  
B. X. Ochoa-Salazar

ABSTRACTUsing Finite Element Method (FEM) simulations is possible to study the homogeneity of deformation in the Equal Channel Angular Pressing (ECAP) process. In this work an investigation about the influence of a modified die on strain distribution in an ecaped Al6060 alloy was carried out. Due to that, tensile stress occurs in the vicinity of upper surface of the specimen in the severe plastic deformation zone, which increases the cracking and fracture tendency of the specimen and impedes further ECAP processing, the conventional ECAP die was modified to eliminate the tensile stress and enhance the compressive stress in the severe plastic deformation zone and reducing the cracking and fracture tendency of the specimen. Finite element analysis demonstrated that the stress state changes from tensile to strongly compressive when using the modified die. The aim of this study is to evaluate the advantages/disadvantages of the modified ECAP die and processing conditions.


Sign in / Sign up

Export Citation Format

Share Document