The all-composite road bridge – a proposal for rapid urbanisation

Author(s):  
Tomasz Siwowski ◽  
Aleksander Kozlowski ◽  
Leonard Ziemiański ◽  
Mateusz Rajchel ◽  
Damian Kaleta

<p>Technology and materials can help cities get smarter and cope with rapid urbanisation. Life cycle assessment (LCA) is one of the approaches applied in evaluation of material sustainability. Many significant LCA comparisons of innovative and traditional construction materials indicate that fibre- reinforced polymer (FRP) composites compare very favourably with other materials studied. As a proposal for rapid urbanisation, the FRP all-composite road bridge was developed and demonstrated in Poland. The paper describes the bridge system itself and presents the results of research on its development. The output of the R&amp;D project gives a very promising future for the FRP composite bridge application in Poland, especially for cleaner, resilient and more environmentally efficient infrastructure of fast-growing cities.</p>

2020 ◽  
Vol 64 (189) ◽  
pp. 75-84
Author(s):  
Łukasz Gołębiowski ◽  
Marcin Siwek ◽  
Marcin Ciesielski ◽  
Andrzej Zagórski ◽  
Sławomir Krauze ◽  
...  

The subject of the modelling work and the conducted experiments is the composite shell of a train seat. The activities carried out involved designing the geometry, planning the material structure, and selecting the materials to be used. The shell was built using polymer matrix fibrous composites (i.e. FRP – Fibre Reinforced Polymer – composites), which are lighter than steel and comply with the relevant standards for strength and safety at the same time. This was followed by creating a computational model for the shell and conducting a strength analysis in accordance with the guidelines of the relevant industry standard and strength hypotheses adopted for FRP composites. The calculations were conducted using ANSYS Composite PrepPost software based on the finite element method. The article offers a strength analysis of an optimised composite shell of a train seat. Based on the guidelines obtained as a result of the conducted modelling work, a physical prototype (validation model) of the seat was created. Hot vacuum lamination technology was applied in the production process. The experimental validation of the model, producing a positive result, was conducted using a test stand owned by S.Z.T.K. TAPS – Maciej Kowalski. Keywords: train seat structure, FRP composite, FEM modelling, experimental validation


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4430
Author(s):  
Sankar Karuppannan Gopalraj ◽  
Ivan Deviatkin ◽  
Mika Horttanainen ◽  
Timo Kärki

There are forecasts for the exponential increase in the generation of carbon fibre-reinforced polymer (CFRP) and glass fibre-reinforced polymer (GFRP) composite wastes containing valuable carbon and glass fibres. The recent adoption of these composites in wind turbines and aeroplanes has increased the amount of end-of-life waste from these applications. By adequately closing the life cycle loop, these enormous volumes of waste can partly satisfy the global demand for their virgin counterparts. Therefore, there is a need to properly dispose these composite wastes, with material recovery being the final target, thanks to the strict EU regulations for promoting recycling and reusing as the highest priorities in waste disposal options. In addition, the hefty taxation has almost brought about an end to landfills. These government regulations towards properly recycling these composite wastes have changed the industries’ attitudes toward sustainable disposal approaches, and life cycle assessment (LCA) plays a vital role in this transition phase. This LCA study uses climate change results and fossil fuel consumptions to study the environmental impacts of a thermal recycling route to recycle and remanufacture CFRP and GFRP wastes into recycled rCFRP and rGFRP composites. Additionally, a comprehensive analysis was performed comparing with the traditional waste management options such as landfill, incineration with energy recovery and feedstock for cement kiln. Overall, the LCA results were favourable for CFRP wastes to be recycled using the thermal recycling route with lower environmental impacts. However, this contradicts GFRP wastes in which using them as feedstock in cement kiln production displayed more reduced environmental impacts than those thermally recycled to substitute virgin composite production.


2021 ◽  
Author(s):  
Baisheng Zhang ◽  
Hongchao Zhao

Abstract With the depletion of shallow resources, the drawbacks of conventional bolting system in sustaining the integrity of the roadway have drawn much attention. Developing the innovative secondary standing support is therefore to be urgent. This paper presents a hybrid tubular standing support, which consists of an exterior container made of PVC and fibre-reinforced polymer (FRP) composites and the infill material made of coal rejects and high flowable cementitious grout material. Compared with other marketable standing support, the combination application of the large rupture strain PVC tube and the FRP composite with high strength-to-weight ratio can provide the effective confinement to infill material, which may result in the strain hardening behaviour. The use of coal reject to generate the backfill material is believed to be effective and thus is attractive from the design aspect. To verify these mentioned advantages, a series of compression tests were conducted on this FRP-PVC tubular standing support (FPTSS) with different thickness of the FRP jacket. In addition, the compression tests were also conducted to investigate the compressive behaviour of FRP tubular standing support (FTSS) and PVC tubular standing support (PTSS). Test results indicated that the combination of FRP and PVC composite achieve the superior behaviour either in terms of the compressive strength or the deformation ability.


2017 ◽  
Vol 740 ◽  
pp. 111-117 ◽  
Author(s):  
Chye Lih Tan ◽  
Azwan Iskandar Azmi ◽  
Noorhafiza Muhammad

Hole quality is one of the important criteria for hybrid composite components when assessing drilling behaviour because it influences the strength of composite parts post assembly. Nonetheless, some unique characteristics of hybrid Fibre-Reinforced Polymer (FRP) composites make them difficult to obtain the required quality and strict final dimensional accuracy. Based on previous studies, delamination has been recognized as one of the critical failure mechanisms in the drilling operation of FRP composites. It can often be the limiting factor for the final composite materials applications. Thus, in order to achieve a delamination-free in the drilling of hybrid FRP composites, an analytical model and a series of thrust force experiments are endeavoured in this study. The main purpose of the model is to compute the critical thrust force at the on-set of delamination during the drilling process. Results of this analytical study indicated that the delamination damage can be alleviated if the applied thrust force is lower than the critical thrust force value. Importantly, a good agreement was evident between the estimated critical thrust force and the measured thrust force in this particular study.


Sign in / Sign up

Export Citation Format

Share Document