Biofiber reinforced polymer composites for structural applications

Author(s):  
O. Faruk ◽  
M.S. Ain
2017 ◽  
Vol 2017 ◽  
pp. 1-1
Author(s):  
Jun Deng ◽  
Marcus M. K. Lee ◽  
Baolin Wan ◽  
Giuseppina Amato

2021 ◽  
Vol 9 (3A) ◽  
Author(s):  
M Sharan Chandran ◽  
◽  
Yashasvi Chebiyyam ◽  
K Padmanabhan ◽  
◽  
...  

Interfacial properties of composite materials play an important role in overall efficiency and reliability of these materials in structural applications. The objective of this study is to develop a multiple fiber microbond pull-out test to determine the interfacial properties of self-reinforced polymer composites (SRPC) and compare it with single fiber multiple fiber pull-out tests. SRPC possess better interfacial adhesion due to their similarity in chemical structure. The system used in this study is LDPE sheet reinforced with plain weave ultra-high molecular weight polyethylene (LDPE/ UHMWPE). The optimal operating temperature was estimated with DSC and TGA analysis. The micromechanical and meso-mechanical approaches were compared to validate the results. A fractographic study was performed to correlate lamina and meso-mechanical properties found in this study. It was observed that the multiple fiber pullout test explained in this study is on par with or better than the other conventional methods to evaluate interface properties.


2020 ◽  
pp. 096739112091088 ◽  
Author(s):  
Christopher I Idumah

Polymer composites for structural applications are prone to damage emanating from cracks which are formed deep within the material where detection is not easy and repairing almost not feasible. Material cracking results in mechanical deterioration of pre-reinforced polymer composites utilized in microelectronic polymer-based components which can result in electrical failure. Micro-cracking occurring as a result of thermally and mechanically induced fatigue is additionally an established challenge in polymer performance. Self-healing composites are materials exhibiting capability of automatically recovering when damaged. They derive their inspiration through biological systems peculiar to the human skin which exhibit a natural tendency to undergo healing by themselves. Irrespective of their application, the instance cracks are formed within a polymeric composite and the structural integrity of the material is remarkably compromised. Therefore, this article elucidates very recently emerging advancements on self-healing composites. Challenges, prospects, future market disposition, and application of self-healing composites are also presented.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2186 ◽  
Author(s):  
N. M. Nurazzi ◽  
F. A. Sabaruddin ◽  
M. M. Harussani ◽  
S. H. Kamarudin ◽  
M. Rayung ◽  
...  

Developments in the synthesis and scalable manufacturing of carbon nanomaterials like carbon nanotubes (CNTs) have been widely used in the polymer material industry over the last few decades, resulting in a series of fascinating multifunctional composites used in fields ranging from portable electronic devices, entertainment and sports to the military, aerospace, and automotive sectors. CNTs offer good thermal and electrical properties, as well as a low density and a high Young’s modulus, making them suitable nanofillers for polymer composites. As mechanical reinforcements for structural applications CNTs are unique due to their nano-dimensions and size, as well as their incredible strength. Although a large number of studies have been conducted on these novel materials, there have only been a few reviews published on their mechanical performance in polymer composites. As a result, in this review we have covered some of the key application factors as well as the mechanical properties of CNTs-reinforced polymer composites. Finally, the potential uses of CNTs hybridised with polymer composites reinforced with natural fibres such as kenaf fibre, oil palm empty fruit bunch (OPEFB) fibre, bamboo fibre, and sugar palm fibre have been highlighted.


Sign in / Sign up

Export Citation Format

Share Document